Матричная алгебра - элементарные преобразования матриц. Элементарные матрицы Определение элементарных преобразований матрицы

Элементарн ыми преобразованиями строк матрицы называется преобразования следующих типов:

1) Умножение каждого элемента некоторой строки на одно и то же ненулевое число. Остальные строки остаются без изменения (кратко: умножение строки на число).

2) Прибавление к каждому элементу некоторой строки соответствующих элементов другой строки, умноженные на одно и то же число. Остальные строки (в том числе и прибавляемое) остаются без изменения (кратко: прибавление к строке другой, умноженной на число).

3) Перемена местами некоторых двух строк матрицы. Остальные строки остаются без изменения.

Эти преобразования называются соответственно преобразованиями первого , второго и третьеготипа (рода ). Последовательно применяя их, мы получаем более сложные преобразования.

Аналогично определяются элементарные преобразования столбцов матрицы.

Теорема

Преобразование третьего типа является некоторой комбинацией преобразований первого и второго типов .

Таким образом, преобразованием третьего типа можно отнести к более сложным, чем элементарные. Но его принято всё-же считать элементарным ради удобства.

Теорема

Любую матрицу элементарными преобразованиями строк можно привести к ступенчатой . Если к матрице применить элементарные преобразования строк и столбцов , то её можно привести к трапециедальному виду .

Например ,

á(1) Поменяли местами первую и вторую строки (преобразование третьего типа).

(2) Первую строку, умноженную на 2, прибавили ко второй и вычли из третьей, умноженную на 3, прибавили к четвёртой (преобразования второго типа).

(3) Вторую строку вычли из третьей и вторую строку, умноженную на 14/11 вычли из четвёртой.

(4) Поменяли местами третью и четвёртую строки.ñ

Таким образом, преобразовали исходную матрицу

в ступенчатую

Теперь, поменяв местами второй и третий столбец, а затем поменяв его же с четвёртым столбцом, перемещаем второй столбец на место четвёртого, третий и четвёртый столбцы окажутся соответственно на месте второго и третьего столбцов:

тем самым преобразовали исходную матрицу в трапециедальную.

Упражнения

Привести матрицу к ступенчатому и трапециедальному видам:

Введем понятие элементарной матрицы.

ОПРЕДЕЛЕНИЕ. Квадратная матрица, получающаяся из единичной матрицы в результате неособенного элементарного преобразования над строками (столбцами), называется элементарной матрицей, соответствующей этому преобразованию.

Так, например, элементарными матрицами второго порядка являются матрицы

где А - любой ненулевой скаляр.

Элементарная матрица получается из единичной матрицы Е в результате одного из следующих неособенных преобразований:

1) умножение строки (столбца) матрицы Е на отличный от нуля скаляр;

2) прибавление (или вычитание) к какой-либо строке (столбцу) матрицы Е другой строки (столбца), умноженной на скаляр.

Обозначим через матрицу, получающуюся из матрицы Е в результате умножения строки на ненулевой скаляр А:

Обозначим через матрицу, получающуюся из матрицы Е в результате прибавления (вычитания) к строке строки, умноженной на А;

Через будем обозначать матрицу, получающуюся из единичной матрицы Е в результате применения элементарного преобразования над строками; таким образом, есть матрица, соответствующая преобразованию

Рассмотрим некоторые свойства элементарных матриц.

СВОЙСТВО 2.1. Любая элементарная матрица обратима. Матрица, обратная к элементарной, является элементарной.

Доказательство. Непосредственная проверка показывает, что для любого отличного от нуля скаляра А. и произвольных выполняются равенства

На основании этих равенств заключаем, что имеет место свойство 2.1.

СВОЙСТВО 2.2. Произведение элементарных матриц является обратимой матрицей.

Это свойство непосредственно следует из свойства 2.1 и следствия 2.3.

СВОЙСТВО 2.3. Если неособенное строчечное элементарное преобразование переводит -матрицу А в матрицу В, то . Верно и обрсипное утверждение.

Доказательство. Если есть умножение строки на ненулевой скаляр А, то

Если же , то

Легко проверить, что верно также обратное утверждение.

СВОЙСТВО 2.4. Если матрица С получается из матрицы А при помощи цепочки неособенных строчечных элементарных преобразований , то . Верно и обратное утверждение.

Доказательство. По свойству 2.3, преобразование переводит матрицу А в матрицу переводит матрицу в матрицу и т. д. Наконец, переводит матрицу в матрицу Следовательно, .

Легко проверить, что верно и обратное утверждение. Условия обратимости матрицы. Для доказательства теоремы 2.8 необходимы следующие три леммы.

ЛЕММА 2.4. Квадратная матрица с нулевой строкой (столбцом) необратима.

Доказательство. Пусть А - квадратная матрица с нулевой строкой, В - любая матрица, . Пусть - нулевая строка матрицы А; тогда

т. е. i-я строка матрицы АВ является нулевой. Следовательно, матрица А необратима.

ЛЕММА 2.5. Если строки квадратной матрицы линейно зависимы, то матрица необратима.

Доказательство. Пусть А - квадратная матрица с линейно зависимыми строками. Тогда существует цепочка неособенных строчечных элементарных преобразований, переводящих А в ступенчатую матрицу; пусть такая цепочка. По свойству 2.4 элементарных матриц, имеет место равенство

где С - матрица с нулевой строкой.

Следовательно, по лемме 2.4 матрица С необратима. С другой стороны, если бы матрица А была обратимой, то произведение слева в равенстве (1) было бы обратимой матрицей, как произведение обратимых матриц (см. следствие 2.3), что невозможно. Следовательно, матрица А необратима.

Определение 5.8. Элементарными преобразованиями строк матрицы называют следующие преобразования:

1) умножение строки матрицы на ненулевое действительное число;

2) прибавление к одной строке матрицы другой её строки, умноженной на произвольное действительное число.

Лемма 5.1. С помощью элементарных преобразований строк матрицы можно поменять местами любые две строки.

Доказательство.

А= .

.

Ступенчатая матрица. Ранг матрицы

Определение 5.9. Ступенчатой будем называть матрицу, которая обладает следующими свойствами:

1) если i -я строка нулевая, то (i + 1)-я строка также нулевая,

2) если первые ненулевые элементы i -й и (i + 1)-й строк расположены в столбцах с номерами k и R , соответственно, то k < R .

Условие 2) требует обязательного увеличения нулей слева при переходе от i -й строки к (i + 1)-й строке. Например, матрицы

А 1 = , А 2 = , А 3 =

являются ступенчатыми, а матрицы

В 1 = , В 2 = , В 3 =

ступенчатыми не являются.

Теорема 5.1. Любую матрицу можно привести к ступенчатой с помощью элементарных преобразований строк.

Проиллюстрируем эту теорему на примере.

А =

.

Получившаяся матрица – ступенчатая.

Определение 5.10. Рангом матрицы будем называть число ненулевых строк в ступенчатом виде этой матрицы.

Например, ранг матрицы А в предыдущем примере равен 3.

Вопросы для самоконтроля

1. Что называется матрицей?

2. Как производится сложение и вычитание матриц; умножение матрицы на число?

3. Дайте определение умножению матриц.

4. Какая матрица называется транспонированной?

5. Какие преобразования строк матрицы называются элементарными?

6. Дайте определение ступенчатой матрицы.

7. Что называют рангом матрицы?

Определители

Вычисление определителей

Определители второго порядка

Рассмотрим квадратную матрицу второго порядка

Определение 6.1. Определителем второго порядка, соответствующим матрице A,называется число, вычисляемое по формуле

А │= = .

Элементы a ij называются элементами определителя A │, элементы а 11 , а 22 образуют главную диагональ , а элементы а 12 , а 21 – побочную.

Пример. = –28 + 6 = –22.

Определители третьего порядка

Рассмотрим квадратную матрицу третьего порядка

А = .

Определение 6.2. Определителем третьего порядка, соответствующим матрице А , называется число, вычисляемое по формуле

А │= = .

Чтобы запомнить, какие произведения в правой части равенства следует брать со знаком «плюс», а какие ─ со знаком «минус», полезно запомнить правило, называемое правилом треугольника:

Пример.

1) = –4 + 0 + 4 – 0 + 2 + 6 = 8.

2) = 1, т. е. │Е 3 │= 1.

Рассмотрим ещё один способ вычисления определителя третьего порядка.

Определение 6.3. Минором M ij элемента a ij определителя называется определитель, полученный из данного вычёркиванием i -й строки и j -го столбца. Алгебраическим дополнением A ij элемента a ij определителя называется его минор M ij , взятый со знаком (–1) i + j .

Пример. Вычислим минор М 23 и алгебраическое дополнение А 23 элемента а 23 в матрице

Вычислим минор М 23:

М 23 = = = –6 + 4 = –2.

Тогда А 23 = (–1) 2+3 М 23 = 2.

Теорема 6.1. Определитель третьего порядка равен сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения.

Доказательство. По определению

= . (6.1)

Выберем, например, вторую строку и найдём алгебраически дополнения А 21 , А 22 , А 23:

А 21 = (–1) 2+1 = –() = ,

А 22 = (–1) 2+2 = ,

А 23 = (–1) 2+3 = –() = .

Преобразуем теперь формулу (6.1)

А │= () + () + () =

= А 21 + А 22 + А 23.

Формула А │= А 21 + А 22 + А 23 . называется разложением определителя А │ по элементам второй строки. Аналогично разложение можно получить по элементам других строк и любого столбца

Пример.

= (по элементам второго столбца) = 1× (–1) 1+2 + 2 × (–1) 2+2 +

+ (–1)(–1) 3+2 = –(0 + 15) + 2(–2 +20) + (–6 +0) = –15 +36 – 6 = 15.

6.1.3 Определители n-го порядка (n N )

Определение 6.4. Определителем n -го порядка, соответствующим матрице n -го порядка

А =

называется число, равное сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения, т. е.

A │= А i1 + A i2 + … + A in = А 1j + A 2j + … + A nj .

Нетрудно заметить, что при n = 2 получается формула для вычисления определителя второго порядка. Если n = 1, то по определению будем считать |A | = |a | = a .

Пример. = (по элементам 4-й строки) = 3×(–1) 4+2 +

2×(–1) 4+4 = 3(–6 + 20 –2 –32) +2(– 6 +16 +60 +2) = 3(–20) +2×72 = –60 +144 = 84.

Заметим, что если в определителе все элементы какой-либо строки (столбца), кроме одного, равны нулю, то при вычислении определителя его удобно разложить по элементам этой строки (столбца).

Пример.

Е n │= = 1 × │E n - 1 │ = … = │E 3 │= 1.

Свойство определителей

Определение 6.5. Матрицу вида

или

будем называть треугольной матрицей.

Свойство 6.1. Определитель треугольной матрицы равен произведению элементов главной диагонали, т. е.

= = .

Свойство 6.2. Определитель матрицы с нулевой строкой или нулевым столбцом равен нулю.

Свойство 6.3. При транспонировании матрицы определитель не изменяется, т. е.

А │= │А t │.

Свойство 6.4. Если матрица В получается из матрицы А умножением каждого элемента некоторой строки на число k , то

В │= k А │.

Свойство 6.5.

= + .

Свойство 6.6. Если матрица В получается из матрицы А перестановкой двух строк, то│В │= −│А │.

Свойство 6.7. Определитель матрицы с пропорциональными строками равен нулю, в частности, нулю равен определитель матрицы с двумя одинаковыми строками.

Свойство 6.8. Определитель матрицы не изменяется, если к элементам одной строки прибавить элементы другой строки матрицы, умноженные на некоторое число.

Замечание. 6.1. Так, как по свойству 6.3 определитель матрицы не меняется при транспонировании, то все свойства о строках матрицы верны и для столбцов.

Свойство 6.9. Если А и В – квадратные матрицы порядка n , то │АВ │=│А ││В │.

Обратная матрица

Определение 6.6. Квадратная матрица А порядка n называется обратимой, если существует матрица В такая, что АВ = ВА = Е n . В этом случае матрица В называется обратной к матрице А и обозначается А –1 .

Теорема 6.2. Справедливы следующие утверждения:

1) если матрица А обратима, то существует точно одна ей обратная матрица;

2) обратимая матрица имеет определитель, отличный от нуля;

3) если А и В – обратимые матрицы порядка n , то матрица АВ обратима, причём (АВ ) –1 = В –1 ×А –1 .

Доказательство.

1. Пусть В и С – матрицы, обратные к матрице А , т. е. АВ = ВА = Е n и АС = СА = Е n . Тогда В = ВЕ n = В (АС ) = (ВА )С = Е n С = С .

2. Пусть матрица А обратима. Тогда существует матрица А –1 , ей обратная, причём

АА –1 = Е n .

По свойству 6.9 определителя │АА –1 │=│А ││А –1 │. Тогда │А ││А –1 │=│Е n │, откуда │А ││А –1 │= 1. Следовательно, │А │¹ 0.

3. Действительно,

(АВ )(В –1 А –1) = (А (ВВ –1))А –1 = (АЕ n )А –1 = АА –1 = Е n .

(В –1 А –1)(АВ ) = (В –1 (А –1 А 21 = –1, А 22 = 2. Тогда А –1 = .

Вопросы для самоконтроля

1. Что называется определителем?

2. Каковы его основные свойства?

3. Что называется минором и алгебраическим дополнением?

4. Каковы способы вычисления определителей (второго, третьего и n -го порядков)?

5. Какая матрица называется квадратной?


Похожая информация.


Матричная алгебра - Элементарные преобразования матриц

Элементарные преобразования матриц

Элементарные преобразования матрицы находят широкое применение в различных математических задачах. Например, они составляют основу известного метода Гаусса (метода исключения неизвестных) для решения системы линейных уравнений .

К элементарным преобразованиям относятся:
1) перестановка двух строк (столбцов);
2) умножение всех элементов строки (столбца) матрицы на некоторое число, не равное нулю;
3) сложение двух строк (столбцов) матрицы, умноженных на одно и то же число, отличное от нуля.

Две матрицы называются эквивалентными , если одна из них может быть получена из другой после конечного числа элементарных преобразований. В общем случае эквивалентные матрицы равными не являются, но имеют один и тот же ранг.

Вычисление определителей с помощью элементарных преобразований

С помощью элементарных преобразований легко вычислить определитель матрицы. Например, требуется вычислить определитель матрицы:

где ≠ 0.
Тогда можно вынести множитель :

теперь, вычитая из элементов j - го столбцасоответствующие элементы первого столбца, умноженные на, получим определитель:

который равен: где

Затем повторяем те же действия для и, если все элементы то тогда окончательно получим:

Если для какого-нибудь промежуточного определителя окажется, что его левый верхний элемент , то необходимо переставить строки или столбцы втак, чтобы новый левый верхний элемент был не равен нулю. Если Δ ≠ 0, то это всегда можно сделать. При этом следует учитывать, что знак определителя меняется в зависимости от того, какой элемент является главным (то есть, когда матрица преобразована так, что). Тогда знак соответствующего определителя равен.

П р и м е р. С помощью элементарных преобразований привести матрицу

Матрица преобразований применяется для вычисления новых координат объекта при его трансформации. Изменяя значения элементов матрицы преобразования, к объектам можно применять любые трансформации (например: масштабирование, зеркальное отражение, поворот, перемещение и т. п.). При любой трансформации сохраняется параллельность линий объекта.

Координаты в PDF выражаются в терминах двумерного пространства. Точка (x, y) в пространстве может быть выражена в векторной форме . Постоянный третий элемент этого вектора (1) нужен для использования вектора с матрицами 3х3 в вычислениях, описанных ниже.

Преобразование между двумя системами координат представлено, как матрица 3х3 и записывается следующим образом:

Координатные преобразования выражаются в виде матричных умножений:

Так как последняя колонка не оказывает ни какого влияния на результаты расчета, то она в вычислениях не принимает участия. Координаты трансформации высчитываются по следующим формулам:

Единичная матрица

Единичной матрицей называется, та у которой значения матрицы a и d равны 1 , а остальные равны 0 . Такая матрица применяется по умолчанию, так как не приводит к трансформации. Поэтому единичную матрицу используют как основу.

Масштабирование

Для увеличения или уменьшения размера объекта по горизонтали/вертикали следует изменить значение a или d соответственно, а остальные применить из единичной матрицы.

Например: Для увеличения размера объекта в два раза по горизонтали, значение a необходимо принять равным 2, а остальные оставить такими как в единичной матрице.

Отражение

Чтобы получить зеркальное отображение объекта по горизонтали следует установить значение a = -1 , по вертикали d = -1 . Изменение обеих значений применяется для одновременного отображения по горизонтали и вертикали.

Наклон

Наклон объекта по вертикали/горизонтали обеспечивается изменением значений b и c соответственно. Изменение значения b/-b - наклон вверх/вниз, c/-c – вправо/влево.

Например: Для наклона объекта по вертикали вверх установим значение b = 1

Высчитываем новые координаты объекта:

В итоге к наклону объекта приводит только координата y , которая увеличивается на значение x .

Поворот

Поворот — это комбинация масштабирования и наклона, но для сохранения начальных пропорций объекта, преобразования должны проводится с точными вычислениями при использовании синусов и косинусов.

Сам поворот происходит против часовой стрелки, α задаёт угол поворота в градусах.

Перемещение

Перемещение осуществляется изменением значений e (по горизонтали) и f (по вертикали). Значения задаются в пикселях.

Например: Перемещение с использованием матрицы применяется редко из-за того, что эту операцию можно проделать другими методами, например, изменить положение объекта во вкладке .

Поскольку матрица трансформации имеет только шесть элементов, которые могут быть изменены, визуально она отображается в PDF . Такая матрица может представлять любое линейное преобразование из одной координатной системы в другую. Матрицы преобразований образуются следующим образом:

  • Перемещения указываются как , где t x и t y — расстояния от оси системы координат по горизонтали и вертикали, соответственно.
  • Масштабирование указывается как . Это масштабирует координаты так, что 1 единица в горизонтальном и вертикальном измерениях в новой координатной системе такого же размера, как и s x и s y единиц в старой координатной системе соответственно.
  • Повороты производятся матрицей , что соответствует повороту осей координатной системы на θ градусов против часовой стрелки.
  • Наклон указывается как , что соответствует наклону оси x на угол α и оси y на угол β .

На рисунке ниже показаны примеры трансформации. Направления перемещения, угол поворота и наклона, показанные на рисунке, соответствуют положительным значениям элементов матрицы.

Умножения матрицы не коммутативны — порядок, в котором перемножаются матрицы, имеет значение.

В таблице ниже приведены допустимые преобразования и значения матрицы.

Исходный рисунок Трансформированный рисунок Матрица Описание
1 0
0 2
0 0

Масштаб по вертикали. Если значение матрицы больше 1, объект расширяется, меньше 1 — сжимается.

2 0
0 1
0 0

Масштаб по горизонтали. Если значение матрицы больше 1, объект расширяется, меньше 1 — сжимается.

-1 0
0 1
0 0

Отражение по горизонтали.

1 0
0 -1
0 0

Отражение по вертикали.

1 1
0 1
0 0

Наклон по вертикали вверх.

1 -1
0 1
0 0

Наклон по вертикали вниз.

1 0
1 1
0 0

Наклон по горизонтали вправо.

1 0
-1 1
0 0
mob_info