Контроллер больших температур на термопаре K-типа. PIC16F676 - Термометры - Конструкции для дома и дачи. Сделай сам: электронный термометр своими руками Термометр до 500 градусов схема

Сегодня мы расскажем, как своими руками сделать электронный термометр из трех деталей.

Очень простой и достаточно точный термометр можно сделать, если у вас случайно завалялся старый стрелочный амперметр со шкалой 100 мкА.
Для этого потребуется и всего две детали.
Температура измеряется датчиком LM 35. Этот интегральный кремниевый включает в себя термочувствительный элемент — первичный преобразователь и схему обработки сигнала, выполненные на одном кристалле и заключенные в корпус, такой, как, например, у КТ 502 (ТО- 92). У датчика LM 35 есть конструктивная разновидность с теми же параметрами, но иной цокалевкой и теплоотводом, что очень удобно для контактных измерений температуры.
Выходное напряжение датчика LM 35 пропорционально шкале Цельсия (10мВ/ С). При температуре 25 градусов этот датчик имеет на выходе напряжение 250 мВ, а при 100 градусов на выходе 1,0 В.
Обозначение датчика несколько необычно. Цоколевка приведена на рисунке.

На схеме датчик изображают прямоугольником с обозначением типа прибора и нумерацией выводов.
термометра приведена на рисунке и столь проста, что не требует пояснений.
Собранный термометр должен быть откалиброван.
Включите схему. Датчик LM 35 плотно прижмите к резервуару ртутного градусника, например с помощью изоленты, укутайте место соединения или просто положите все под подушку. Так как любые тепловые процессы инерционны, придется подождать с полчаса или больше, чтобы температуры датчика и градусника выровнялись, затем потенциометром установите стрелку микроамперметра на цифру, соответствующую температуре градусника. Вот и все. Термометром можно пользоваться.

В авторском варианте для тарировки был использован градусник от 0 до 50 градусов Цельсия с ценой деления 0,1 градус, поэтому термометр получился достаточно точным.
К сожалению, найти такой градусник проблематично. Для грубой тарировки можно просто положить датчик рядом с термометром, измеряющем скажем температуру в помещении, подождать часа два и выставить нужную температуру на шкале микроамперметра.
Если точный градусник все же найдется, то в качестве индикатора вместо стрелочного прибора можно использовать цифровой мультиметр, например китайский ВТ-308В, тогда показания температуры можно будет считывать до десятых долей градуса.
Для тех, кто хочет ознакомиться с интегральными датчиками подробно- простите сайт kit-e.ru или rcl-radio.ru (искать LM 35).

Термопары широко применяются там где необходимо точно померить высокие температуры, т емпературы вплоть до 2500°C. То есть там, где цифровые датчики бы сразу сдохли от перегрева, применяются термопары. Разновидностей термопар существует достаточно много, но самое большое распространение получили хромель-алюмелевые (тип К) термопары, из-за своей дешевизны и практически линейному изменению термоэдс. Этот вид термопар ставятся в водонагреватели и другие бытовые приборы с контролем температуры, их повсеместно используют для контроля температуры при плавке металла, с помощью этих термопар контролируется нагрев жала в паяльной станции. Поэтому будет весьма полезно познакомиться с ними поближе.

Термопара это два проводника из разных металлов и имеющих общую точку контакта (спай). В точке этого контакта возникает разность потенциалов. Эта разность потенциалов зовется термоэдс и напрямую зависит от температуры, в которой находится спай. Металлы подбираются таким образом, чтобы зависимость термоэдс от температуры нагрева была наиболее линейна. Это упрощает расчет температуры и сокращает погрешность измерений.


Так широко применяемые хромель-алюмелевые термопары имеют достаточно высокую линейность и стабильность показаний на всем диапазоне измеряемых температур.
Ниже приведен график для хромель-алюмелевых термопар (тип К) показывающий, зависимость возникающей термоэдс от температуры спая (в конце статьи будет ссылка на график с большим разряшением):

Таким образом значение термоэдс достаточно умножить на нужный коэффициент и получить температуру, не заморачиваясь с табличными значениями и аппроксимацией - один коэффициент на весь диапазон измерений. Очень просто и понятно.
Но встает вопрос о подключении термопары к микроконтроллеру. Понятно что если на выходе термопары напряжение, тогда задействуем АЦП, но разность потенциалов на выходе термопары слишком мала, чтобы уловить хоть что-то. Поэтому прежде его нужно увеличить, например, применив операционный усилитель.

Берём стандартную схему неинвертирующего включения операционного усилителя:


Отношение входного и выходного напряжений описывается простой формулой:

Vout /Vin = 1 + (R2/R1)

От значений резисторов обратной связи R1 и R2 зависит коэффициент усиления сигнала. Величину усиления сигнала нужно подбирать с учетом того, что будет использоваться в качестве опорного напряжения.

Допустим опорным будет напряжение питания микроконтроллера 5V. Теперь необходимо определится с диапазоном температур, которые собираемся измерять. Я взял пределом измерения 1000 °C. При этом значении температуры на выходе термопары будет потенциал примерно 41,3мВ. Это значение должно соответствовать напряжению в 5 вольт на входе АЦП. Поэтому операционник должен иметь коэффициент усиления не менее 120. В итоге родилась такая схема:


В загашнике у меня нашлась давно собранная плата с этим операционником, собирал как предусилитель для микрофона, ее я и применил:


Собрал на бредборде такую схему подключения двухстрочного дисплея к микроконтроллеру:


Термопара тоже валялась без дела долгое время - она шла в комплекте с моим мультиметром. Спай закрыт в металлическую гильзу.


Код Bascom-AVR для работы с термопарой:

$regfile = "m8def.dat"
$crystal = 8000000

Dim W As Integer

"подключение двухстрочного дисплея

Config Lcdpin = Pin , Rs = Portb . 0 , E = Portd . 7 , Db4 = Portd . 6 , Db5 = Portd . 5 , Db6 = Portb . 7 , Db7 = Portb . 6
Config Lcd = 16 * 2
Cursor Off
Cls

"считывание значения с АЦП по прерыванию от таймера

Config Timer1 = Timer , Prescale = 64
On Timer1 Acp

"конфигурация АЦП

Config Adc = Single , Prescaler = Auto , Reference = Avcc

Enable Interrupts
Enable Timer1

Do

Cls
Rem Температура:
Lcd "Teјѕepaїypa:"
Lowerline
Lcd W


Waitms 200

Loop


"работа с АЦП

Acp :

Start Adc "запуск АЦП
W = Getadc (1 )
W = W / 1 . 28 "подгоняем замеры под действ. температуру
Return

End

PIC16F676 Применение, это и паяльная станция, и управление высокотемпературными процессами и т.д. с функцией ПИД регулировки нагревательного элемента

Решил в свой ламинатор вставить термометр, термометр на термопаре K-типа. Чтобы он у меня стал более информативен, считаю, что хоббийный радиолюбитель не может довольствоваться, когда на таком приборе горит только два светодиода "POWER” и "READY” . Развожу платку под свои детальки. На всякий случай с возможностью её резать пополам(это некоторая универсальность). Сразу с местом под силовую часть на тиристоре, но пока эту часть не использую, это будет у меня схемка под паяльник (когда придумаю, как в жало термопару пристроить)


В ламинаторе мало места (механизмы расположены очень плотно, китай понимаеш ли), использую маленький семисегментный индикатор, но это еще не все, плата целиком тоже не влазит, вот тут пригодилась универсальность платы, разрезаю ее надвое (если использовать разъем верхняя часть подходит ко многим разработкам на пикушечках от ur5kby.)


Настраиваю, сначала делаю, как сказано в форуме , не впаиваю термопару, задаю 400 (хотя если этот параметр будет в памяти, этот пункт отпадет) настраиваю переменниками примерно комнатную и точно по кипению,

Такой контроллер теоретически работает до 999°C но в домашних условиях такую температуру вряд ли найти, самое большее это открытый огонь, но у этого источника тепла сильная нелинейность и чувствительность к внешним условиям.

вот примерная таблица.
и еще для наглядности

Так что выбор невелик в выборе источника для настройки показаний контроллера.

больше тут никакой игры кнопочками, Все можно собирать,
Термопару использовал от китайского тестера. И пост в форуме надоумил меня, что эту термопару можно размножать, её длина почти полметра, отрезаю 2 см.

делаю трансформатором по скрутке угольком, шарик получается, а к двум концам точно так, по медной проволочке, для хорошей пайки к моим проводам.

Серия статей об измерении температуры контроллерами Ардуино была бы неполной, без рассказа о термопарах. Тем более что измерять высокие температуры больше нечем.

Термопары (термоэлектрические преобразователи).

Все термодатчики из предыдущих уроков позволяли измерять температуру в диапазоне не шире – 55 … + 150 °C. Для измерения более высоких температур самыми распространенными датчиками являются термопары. Они:

  • имеют крайне широкий диапазон измерения температуры -250 … +2500 °C;
  • могут быть откалиброваны на высокую точность измерения, до погрешности не более 0,01 °C;
  • как правило, имеют низкую цену;
  • считаются надежными датчиками температуры.

Главный недостаток термопар – это необходимость в достаточно сложном прецизионном измерителе, который должен обеспечивать:

  • измерение низких значений термо-ЭДС с верхним значением диапазона десятки, а иногда и единицы мВ;
  • компенсацию термо-ЭДС холодного спая;
  • линеаризацию характеристики термопары.

Принцип действия термопар.

Принцип действия датчиков такого типа основан на термоэлектрическом эффекте (эффекте Зеебека). Поэтому другое название термопары – термоэлектрический преобразователь.

В цепи между соединенными разнородными металлами образовывается разность потенциалов. Ее величина зависит от температуры. Поэтому она называется термо-ЭДС. У разных материалов величина термо-ЭДС разная.

Если в цепи стыки (спаи) разнородных проводников связаны в кольцо и имеют одинаковую температуру, то сумма термо-ЭДС равна нулю. Если же спаи проводов находятся при разных температурах, то общая разность потенциалов между ними зависит от разности температур. В результате мы приходим к конструкции термопары.

Два разнородных металла 1 и 2 в одной точке образуют рабочий спай. Рабочий спай помещают в точку, температуру которой необходимо измерить.

Холодные спаи это точки подключения металлов термопары к другому металлу, как правило, к меди. Это могут быть клеммные колодки измерительного прибора или медные провода связи с термопарой. В любом случае необходимо измерять температуру холодного спая и учитывать ее в вычислениях измеренной температуры.

Основные типы термопар.

Наиболее широкое распространение получили термопары ХК (хромель – копель) и ХА (хромель – алюмель).

Название Обозначение НСХ Материалы Диапазон измерения, °C Чувствительность, мкВ/°C, (при температуре, °C) Термо-ЭДС, мВ, при 100 °C
ТХК (хромель-копелевые) L Хромель, копель - 200 … + 800 64 (0) 6,86
ТХА (хромель-алюмель) K Хромель, алюмель - 270 … +1372 35 (0) 4,10
ТПР (платино-родиевые) B Платинородий, платина 100 … 1820 8 (1000) 0, 03
ТВР (вольфрам-рениевые) A Вольфрам-рений, вольфрам-рений 0 … 2500 14 (1300) 1,34

Как практически измерять температуру с помощью термопары. Методика измерения.

Номинальная статическая характеристика (НСХ) термопары задана в виде таблицы с двумя столбцами: температура рабочего спая и термо-ЭДС. ГОСТ Р 8.585-2001 содержит НСХ термопар разных типов, заданные для каждого градуса. Можно загрузить в PDF формате по этой ссылке .

Для измерения температуры с помощью термопары необходимо выполнить следующие действия:

  • измерить термо-ЭДС термопары (E общ.);
  • измерить температуру холодного спая (T хол. спая);
  • по таблице НСХ термопары определить термо-ЭДС холодного спая, используя температуру холодного спая (E хол. спая);
  • определить термо-ЭДС рабочего спая, т.е. прибавить ЭДС холодного спая к общей термо-ЭДС (E раб. спая = E общ. + E хол. спая);
  • по таблице НСХ определить температуру рабочего спая, используя термо-ЭДС рабочего спая.

Вот пример, как я замерил с помощью термопары типа ТХА температуру жала паяльника.

  • Прикоснулся рабочим спаем к жалу паяльника, замерил напряжение на выводах термопары. Получилось 10,6 мВ.
  • Температура окружающей среды, т.е. температура холодного спая – примерно 25 °C. ЭДС холодного спая из таблицы ГОСТ Р 8.585-2001 для термопары типа K при 25 °C равна 1 мВ.
  • Термо-ЭДС рабочего спая равна 10,6 + 1 = 11,6 мВ.
  • Температура из той же таблицы для 11,6 мВ равна 285 °C. Это и есть измеренное значение.

Такую последовательность действий нам надо реализовать в программе Ардуино термометра.

Ардуино термометр для измерения высоких температур с помощью термопары типа ТХА.

У меня нашлась термопара TP-01A. Типичная, широко распространенная ТХА термопара от тестера. Ее я и буду использовать в термометре.

На упаковке указаны параметры:

  • тип K;
  • диапазон измерения – 60 … + 400 °C;
  • точность ±2,5 % в диапазоне до 400 °C.

Диапазон измерения указан для кабеля из стекловолокна. Существует похожая термопара TP-02, но с зондом длиной 10 см.

У TP-02 верхняя граница измерения 700 °C . Значит, будем разрабатывать термометр:

  • для термопары типа ТХА;
  • с диапазоном измерения – 60 … + 700 °C.

Разобравшись в программе и схеме устройства, Вы сможете создать измеритель для термопар любых типов с любым диапазоном измерения.

Остальные функциональные возможности термометра такие же, как у устройств из трех предыдущих уроков, включая функцию регистрации изменения температуры.

Рубрика: . Вы можете добавить в закладки.

Поводом для сборки этой схемы послужила поломка терморегулятора в электрическом духовом шкафу на кухне. Поискав в интернете, особого изобилия вариантов на микроконтроллерах не нашел, конечно есть кое-что, но все в основном рассчитаны на работу с термодатчиком типа DS18B20, а он очень ограничен в температурном диапазоне верхних значений и для духовки не подходит. Задача ставилась измерять температуры до 300°C, поэтому выбор пал на термопары К-типа. Анализ схемных решений привел к паре вариантов.

Схема терморегулятора - первый вариант

Термостат собраный по этой схеме имеет заявленный предел верхней границы 999°C. Вот что получилось после его сборки:

Испытания показали, что сам по себе термостат работает достаточно надежно, но не понравилось в данном варианте отсутствие гибкой памяти. Пошивка микроконтроллера для обеих вариантов - в архиве .

Схема терморегулятора - второй вариант

Немного поразмыслив пришел к выводу, что возможно сюда присоединить тот же контроллер, что и на паяльной станции, но с небольшой доработкой. В процессе эксплуатации паяльной станции были выявлены незначительные неудобства: необходимость перевода таймеров в 0, и иногда проскакивает помеха которая переводит станцию в режим SLEEP . Учитывая то, что женщинам ни к чему запоминать алгоритм перевода таймера в режим 0 или 1 была повторена схема той же станции, но только канал фен. А небольшие доработки привели к устойчивой и "помехонекапризной" работе терморегулятора в части управления. При прошивке AtMega8 следует обратить внимание на новые фьюзы. На следующем фото показана термопара К-типа, которую удобно монтировать в духовке.

Работа регулятора температуры на макетной плате понравилась - приступил к окончательной сборке на печатной плате.

Закончил сборку, работа тоже стабильная, показания в сравнении с лабораторным градусником отличаются порядка на 1,5°C, что в принципе отлично. На печатной плате при настройке стоит выводной резистор, пока что не нашел в наличии SMD такого номинала.

Светодиод моделирует ТЭНы духовки. Единственное замечание: необходимость создания надежной общей земли, что в свою очередь сказывается на конечный результат измерений. В схеме необходим именно многооборотный подстроечный резистор, а во-вторых обратите внимание на R16, его возможно тоже необходимо будет подобрать, в моём случае стоит номинал 18 кОм. Итак, вот что имеем:

В процессе экспериментов с последним терморегулятором появились ещё незначительные доработки, качественно влияющие на конечный результат, смотрим на фото с надписью 543 - это означает датчик отключен или обрыв.

И наконец переходим от экспериментов до готовой конструкции терморегулятора. Внедрил схему в электроплиту и пригласил авторитетную комиссию принимать работу:) Единственное что жена забраковала - маленькие кнопки на управлении конвекцией, общее питание и обдув, но это решаемо со временем, а пока выглядит вот так.

Регулятор заданную температуру держит с точностью до 2-х градусов. Происходит это в момент нагрева, из-за инертности всей конструкции (ТЭНы остывают, внутренний каркас выравнивается температурно), в общем в работе схема мне очень понравилась, а потому рекомендуется для самостоятельного повторения. Автор - ГУБЕРНАТОР .

Обсудить статью СХЕМА ТЕРМОРЕГУЛЯТОРА

mob_info