Самодельное водяное охлаждение компьютера. Водяное охлаждение своими руками: теория и практика. Способы определения тепловыделения компьютера

По различным компьютерным форумам и магазинам бродит огромное число мифов, связанных со сборкой и настройкой ПК. Некоторые из них действительно были правдивыми лет эдак 10 назад, а некоторые уже изначально были неверны. И сегодня мы поговорим о мифах, которые связаны с системами охлаждения как системного блока целиком, так и видеокарты и процессора по отдельности.

Миф первый: комплектную термопасту к кулеру нужно выкидывать и брать нормальную

И да и нет. Все зависит от класса кулера: к примеру, если вы берете простенький кулер, который состоит из обычного алюминиевого радиатора и небольшого вентилятора, то вам и положат в комплекте простую термопасту уровня КПТ-8. И большего вам и не нужно: все равно такой кулер охладит ну максимум Core i3, а при его тепловыделении (порядка 30 Вт) теплопроводящие свойства термопасты не играют особой роли, и смена комплектной термопасты на что-то дорогое (даже на жидкий металл) снизит вам температуру от силы на пару градусов - то есть игра свеч не стоит. С другой стороны, если вы берете дорогой кулер от той же Noctua, с 5 медными теплотрубками и никелерованием, то вам и положат в комплекте достаточно хорошую термопасту, как минимум уровня Arctic MX-2. Так что и здесь смена термопасты на лучшую (или на все тот же жидкий металл) снизит температуру опять же несильно. Но, с другой стороны, обычно такие кулеры берутся под разгон, так что пара градусов может быть критичной. Но в общем и целом то, что комплектная термопаста плохая - это миф: она хорошая для своего класса кулера.

Миф второй: из двух вентиляторов эффективнее тот, у которого обороты выше

Достаточно забавный миф, который в корне не верен. Самой важной характеристикой вентилятора является отнюдь не его максимальное число оборотов в минуту, и не форма лопастей, и даже не размер - а воздушный поток, который он создает: то есть объем воздуха, который прокачивает такой вентилятор в единицу времени. И чем выше этот показатель - тем эффективнее будет работать вентилятор. И поэтому скорость вентилятора тут роли не играет: 120 мм вертушка на 1000 об/м зачастую создает больший воздушный поток, чем 80 мм вертушка на 1500 об/м. Так что это - однозначный миф: из двух вентиляторов эффективнее тот, у которого больше воздушный поток.

Миф третий: прямой контакт медных теплотрубок с крышкой процессора лучше, чем контакт крышки с алюминиевым основанием кулера

Тут все уже не так просто. Во-первых, если мы видим такое основание кулера, то его брать не стоит:


Почему? Ответ прост - отвод тепла будет неэффективен, так как между теплотрубками есть зазоры, и в итоге площадь контакта будет существенно меньше площади крышки процессора. С учетом того, что это башенный кулер и его обычно используют для охлаждения «горячих» Core i7 или Ryzen - мы получим большие температуры, чем при полном контакте основания кулера с крышкой процессора (для скептиков - даже ASUS при переходе от 900ой серии видеокарт Nvidia к 1000ой отказалась от прямого контакта теплотрубок с кристаллом GPU именно по этой причине).

То есть, алюминиевое основание с проходящими через него теплотрубками - лучше? Конструкция выглядит так:


И да и нет. Проблема в том, что место контакта двух металлов - в данном случае меди и алюминия - обладает некоторым термическим сопротивлением. И чтобы снизить это сопротивление, контакт двух металлов должен быть наиболее плотным (медные трубки должны быть полностью окружены алюминием, а еще лучше - впаяны в него). Вот в таком случае и контакт крышки процессора с основанием будет наиболее полным, и теплопередача на стыке двух металлов будет хорошей.

Миф четвертый - шлифовка основания кулера и процессора улучшит теплопередачу между ними

В теории - все верно: чем ровнее поверхности, тем меньше в них зазоров, тем плотнее будет контакт и, значит, тем лучше будет теплопередача. Но вот суть в том, что дома вы ровнее поверхности точно не сделаете, более того - скорее всего из-за того, что местами вы стешите больше, а местами меньше - вы только ухудшите контакт («на глазок» хорошо стесать не получится). Ну и современные кулеры уже отполированы так, что даже на специальной шлифовальной машинке вы вряд ли сделаете полировку лучше. Так что этот миф можно отнести к древним - да, действительно, на заре появления кулеров их полировка оставляла желать лучшего. Но сейчас это не так.

Миф пятый - так как жидкий металл по своим свойствам схож с припоем, его нужно использовать везде, где только можно и нельзя

Да, действительно, теплопроводящие свойства жидкого металла, бывает, на порядок лучше, чем у термопаст, и действительно схожи по эффективности с припоем. Но у него есть несколько важных особенностей: во-первых, он проводит ток. Так что при его намазывании (хотя скорее - втирании) следите за тем, чтобы он не попадал на компоненты платы. Особенно тщательно следите за этим, когда меняете термопасту на ЖМ на кристалле GPU - рядом с ним зачастую находится много мелких компонентов, закорачивание которых может привести к выходу видеокарты из строя:


Так что при использовании ЖМ заизолируйте все ближайшие компоненты платы при помощи того же лака.

И вторая особенность жидкого металла - в его составе есть галлий. Металл примечателен тем, что он разрушает алюминий, так что если у вас подложка кулера именно такая - использовать его нельзя. С медью, никелем, серебром и прочими металлами - проблем нет. Ну и последняя его особенность - не имеет смысла использовать его с воздушным кулером: практика показывает, что замена хорошей термопасты на ЖМ снижает температуру всего на 2-3 градуса. А вот с водяным охлаждением можно добиться и более существенной разницы.

Миф шестой: водяное охлаждение всегда лучше воздушного

В теории - да: вода эффективно отводит тепло от процессора к радиатору, площадь которого у хороших водянок зачастую больше, чем у кулеров. Да и вентиляторов на водянках обычно все же два, а не один, так что воздушный поток также получается большим. Но вот с современными процессорами от Intel, где под крышкой «терможвачка», можно наблюдать интересный эффект: что с кулером они зачастую перегреваются, что с дорогущей водянкой. Тут уже проблема в том, что плохая заводская термопаста под крышкой процессора может отвести от его кристалла всего 130-140 Вт. С учетом того, что тепловыделение топовых 10-ядерных процессоров зачастую приближается и к 200 Вт (особенно при разгоне) - мы получаем перегрев, который не зависит от системы охлаждения, так как проблема с теплоотводом находится еще до нее, под крышкой процессора. Так что водяная система охлаждения далеко не всегда будет лучше воздушной, и поэтому не стоит удивляться, почему это с топовой водянкой Core i9 греется до 100 градусов под нагрузкой.

Миф седьмой: чем больше корпусных кулеров, тем лучше

Достаточно популярное заблуждение: в интернете полно картинок, где на корпус нацеплено 3-4 кулера с попугайной подсветкой. На практике это не только не поможет, но и будет мешать. Проблема в том, что любой корпус - это замкнутое достаточно узкое пространство, и любой кулер будет создавать в нем определенный воздушный поток. И когда кулеров много, да и еще дуют в разные стороны - внутри корпуса будет твориться ветряной ад, и в итоге может получиться так, что теплый воздух не будет толком выводиться. Поэтому лучше всего нацепить только два кулера, но правильно: на передней панели он работают на вдув, на задней - на выдув. Тогда внутри корпуса будет создаваться один четкий воздушный поток:


Причем стоит учитывать то, что воздушный поток кулера на вдув должен быть равен воздушному потоку кулера на выдув. Возникает вопрос - а почему на передней панели кулер на вдув, а на задней - на выдув, а не наоборот? Ответ банален - сзади системника обычно более пыльно, чем спереди. Так что кулер на вдув на задней крышке просто втягивал бы пыль внутрь корпуса, что нехорошо (да-да, причина только в этом, а не в том, что дескать вентилятор процессора крутится именно в эту сторону).

Миф восьмой - при нагрузке лучше выставлять максимальные обороты вентилятора для лучшего охлаждения

В теории опять же все верно: больше обороты > больше воздушный поток > эффективнее отвод тепла от радиатора > ниже температуры процессора. Однако на практике зачастую разница в температуре процессора при максимальных оборотах вентилятора, и при половине от максимальных оборотов - всего несколько градусов. Почему так происходит? Ответ прост: воздух - не самый лучший теплоноситель, и поэтому чем выше воздушный поток - тем меньше от этого прирост. Так что зачастую можно установить скорость вращения вентилятора на 50-70% от максимума, и получить хороший баланс тишины и температуры.

Как видите - мифов достаточно много, так что при сборке ПК будьте аккуратны: бывает так, что, казалось бы, логичное умозаключение может быть в корне неверным.

Началась вся история с модернизации системы. Захотелось мне сменить процессор AMD Athlon XP на Athlon 64.

А из этого следовало, что сменой процессора здесь дело не обошлось бы. Поэтому мне пришлось сменить

  • Процессор: AMD Athlon 64 3000+ Socket 754 (NewCasle)
  • Материнка: ASUS K8N-E Deluxe
  • Память: Два модуля по 256 Mb PC-3200
  • Видео: Albatron GeForce 4 Ti4800SE 128Mb AGP8x
  • HDD: WD SATA 80Гб 7200rpm (8Mb буфер), Seagate Barracuda ATA-100 40Гб 7200rpm (2Mb буфер)
  • CD-ROM ASUS 52X
  • CD-RW NEC 48x/24X/48x
  • FDD Mitsumi
  • Корпус с блоком питания на 420w
  • Охлаждение: кулер Titan 4800rpm+4 дополнительных вентилятора

Но прошу Вас заметить это конфигурация, получившаяся после завершения апгрейда, а пока что в системе стоял блок питания на 300W, и не было дополнительных вентиляторов, а также мощной системы звука, которая в данном списке не указана, но о ней в конце данной статьи.
А пока начинаем перемещаться чуть-чуть в перед. Первое впечатление от приобретенного железа, затмевало все проблемы системы, но в скором времени мне пришлось конкретно задуматься о них.

Давайте перейдем к первой проблеме, а именно проблеме шума. Я Вам, наверное, еще не сказал, что при смене железа системный блок не был заменен на новый, что привело к увеличению шума при работе кулера на полной скорости вращения. На самом деле проблема была не в системнике, а в самом кулере, по-видимому, производитель не учел его аэродинамические недостатки, в связи с этим казалось, что мой системный блок вот-вот уедет (в прямом смысле, дребезжание было просто невыносимым).
Но одной беды без другой не бывает, и случилось так, что при игре в DooM3 в моем блоке питания, что-то сгорело, и он наотрез отказывался включать систему. Было решено купить блок питания Thermaltake Dual Fan 420W, выбор пал на него не случайно, т.к. его вес составил почти два с половиной килограмма, а система регуляции скорости вращения вентиляторов не могла увеличить шумы компьютера. Да и наличие второго вентилятора, оттягивающего горячий воздух из системника, очень помогало при оттягивании горячего воздуха от процессора. После установки блока питания оказалось, что мой системник больше не хочет жужжать и прыгать, а точнее звук кулера стал сливаться со звуком вентиляторов блока питания. А, следовательно, первая проблема после этого полностью отпала.
Но оставалось еще две проблемы, а именно проблема охлаждения и проблема хорошего звука. Ну, начнем с проблемы охлаждения. Было решено купить три вентилятора 80х80mm и установить в их в системный блок. Причем с двумя вентиляторами проблем не возникло ну, а вот с третьим возникла небольшая проблема, а именно его установка на нестандартное место, в одну из боковых панелей системного блока.

Место установки данного вентилятора было выбрано прям напротив слотов PCI. Для установки данного вентилятора было решено просверлить 4 отверстия в крышке системного блока, расстояние между которыми составило около 80мм, т.е. прямое предназначение этих отверстий было в закреплении вентилятора. Но также необходимо было подумать и о заборе воздуха, а, следовательно, необходимо было просверлить отверстия под рабочей частью вентилятора, для этого было начерчено 3 окружности и по ним просверлены отверстия, расстояние, между которыми, составило примерно 3-5мм. В результате получился вот такой рисунок:


При этом температура процессора не стала превышать 55 градусов. Получилась примерно такая схема прохождения воздуха:


Из данной схемы видно, что, как и положено снизу в системник поступает холодный воздух (благодаря двум вентиляторам, работающим на вдув), поднимаясь к верху воздух, нагревается и выбрасывается (благодаря вентиляторам блока питания и системного блока, работающим навыдув). Вот так и была решена вторая проблема дешево и, сильно не напрягаясь.
Третья проблема, наверное, самая главная. Это установка 6-канальной системы звучания без сабвуфера. Изначала дома были найдены старые довольно таки большие колонки (если считать, что они подключались к компьютеру). Далее эти колонки решено было решено мною подключить к компьютеру. Но тут возникала проблема, а именно отсутствие в них усилителя звука. Решение данной проблемы пришло как-то само собой, необходимо было просто купить недорогие колонки в ценовом диапазоне около 200-300 руб. Выбор пал на Genius SP-Q06. После покупки вторая колонка сразу же по приходу домой тут же была разобрана, и к ее динамику был припаян провод от старых наушников, который соединялся (в моем случае при помощи самой обыкновенной скрутки) с проводами, идущими на большие колонки.

После включения данной конструкции оказалось, что звучание больших колонок заменяет сабвуфер. Далее для создания эффекта объемного звука колонки были разнесены по разным частям комнаты (а большие и вовсе были спрятаны в самые укромные места, т.к. имели непристойный вид).


Ну и как оказалось, все мои старания не прошли даром. Если раньше мои игры сильно не напрягали, то теперь во время игры от сильного и резкого звука по телу невольно стали пробегать мурашки.
Тем самым мои потребности в системе были удовлетворены, а сидеть за компьютером стало намного приятней. Надеюсь, и вам материалы данной статьи помогут в реализации ваших идей.

Введение

Случилось так, что когда подошло время очередного апгрейда, я приобрел практически все комплектующие заново. И от уже имеющегося компьютера осталось старое, доброе, немного устаревшее железо. А отдавать его за бесценок в хищные руки скупщиков... Такая мысль казалась кощунственной. И, естественно, возникло желание собрать второй компьютер. Для Интернета, фотографий, работы в Word… Да мало ли для чего он может пригодиться? Тем более, что выдающиеся скоростные результаты такому компьютеру ни к чему, а вот тихим он быть просто обязан. А железо имелось следующее:

    CPU - Barton 2500+

  • GP - Radeon 8500

    И остальное память, HDD, то се…

Так же были у меня две такие вот штуки.

Пассивный кулер на чипсет ZM-NB47J и кулер для винчестера на тепловых трубках ZM-2HC2. Приобретено это было еще прошлым летом как раз для построения подобной системы. Кулер 2HC2 по прямому назначению я никогда не собирался использовать. Он нужен был как источник тепловых трубок, возможно несколько дороговатый. Но тишина требует жертв.

На всякий случай напомню, что тепловая трубка это устройство, имеющее очень высокую теплопроводность, во много раз выше теплопроводности меди. Про тепловые трубки писалось очень много, и я думаю не нужно загромождать статью, повторно описывая устройство и принцип ее работы.

По большому счету, меня беспокоило только охлаждение процессора. На видеокарту можно было приобрести пассивное охлаждение производства того же Zalman. Охлаждение на чипсет есть. Блок питания с пассивным охлаждением у меня тоже имелся.

Этот блок я изготовил из блока EuroCase 480W. Статью об этой процедуре можно посмотреть здесь http://www.overclockers.ru/lab/15862.shtml . Этот блок питания имеет небольшой заводской перекос напряжения в сторону 5 вольт и поэтому не особенно хорош для моего нового «боевого коня». В новом, мощном компьютере цепи питания процессора кормятся от 12 вольт. И поэтому выдаваемые данным блоком немного заниженные 12 вольт плохо сказываются на разгоне, при котором напряжение проседает еще больше. А на Asus A7N8 как раз наоборот. Процессор питается от 5-ти. И такой блок питания отлично подходит.

Так вот, мне нужен был пассивный кулер на процессор. Как то на сайте одного японца с предположительным ником Нумано, я видел самодельные пассивные кулеры на тепловых трубках похожих на трубки из 2HC2. Приведу фотографии взятые с этого сайта:

Устройства на этом сайте мне очень понравились, и я решил взять эти конструкции за основу. Уж больно его трубки похожи на трубки из Залмановского ZM-2HC2. Принцип действия кулера следующий – тепло от ядра процессора, имеющего небольшую площадь, тепловые трубки передают большому радиатору, и равномерно распределяют его по всей площади радиатора. Охлаждаться радиатор будет естественной конвекцией воздуха. Просто поставить на процессор огромный радиатор крайне затруднительно, да и скорости распространения тепла даже в меди будет недостаточно. И получится, что небольшая часть радиатора рядом с процессором и сам процессор будет перегреваться, а периферийные области останутся холодными. Не хватит скорости распространения тепла. Тепловые трубки я расположу веером, и они будут равномерно отдавать тепло по всей площади радиатора.

И начал я разбирать сие чудо науки и техники. Трубки были просто вставлены в отверстия двух алюминиевых пластин и "раскернены" каким-то зубилом. Немного раскачав изделие, я стал вынимать трубку. Сначала она не поддавалась, но потом неожиданно выскочила. И я заехал локтём в стену. На стене осталась аккуратная вмятина. :) Помянув (нехорошо) маму г-на Залмана, стал вынимать следующую, но уже с осторожностью.

После разборки я стал пытаться разогнуть трубку. Это оказалось, на удивление непросто. Трубки очень жесткие. Пришлось приложить приличное усилие. Трубка с хрустом стала разгибаться, а потом неожиданно сломалась. Никакого шипения я не услышал. Создалось впечатление, что разряжения в трубке не было. Так же из трубки вылетела капля жидкости размером со спичечную головку. Жидкость ничем не пахла. Дегустировать ее я не стал. В трубке находится фитиль, изготовленный из сплетенных тонких латунных проволочек.

Теплосъемник я заказал на заводе, хотя при желании можно было изготовить и самому. Ничего сложного. Взять две медных пластины размером 50 на 50 миллиметров. И толщиной миллиметров пять. Стянуть их винтами и просверлить четыре отверстия диаметром 5 миллиметров. Большее число отверстий сверлить, на мой взгляд, бессмысленно. Величина ядра процессора невелика и от крайних трубок будет мало проку.

Для передачи тепла от тепловых трубок к радиатору я решил приспособить оставшиеся после разборки две алюминиевые пластины.

Собрав эту конструкцию с применением, для улучшения теплопередачи, термопасты КПТ-8, я стал примерять изделие в корпус.

Крепеж теплосъемника к сокету я вырезал ножницами по металлу, из куска перфорированной стали, оставшейся от корпуса блока питания. Для рассеивания тепла я применил два радиатора размером 150 на 50 на 60мм. Конечно, они маловаты для рассеивания тепла от Barton 2500+ на номинальной частоте и тем более разогнанного. Но для проверки и для работы на пониженной частоте вполне подойдут. Тем более, в случае успеха эксперимента я могу купить радиатор побольше. В одном радиомагазине я видел радиатор размером почти с боковую стенку мидитауэра, но и стоил он прилично. Покупать его для неизвестно чем закончившегося эксперимента я посчитал опрометчивым.

Прикручивал радиаторы через все ту же незаменимую КПТ-8.

Монтирую в корпус.

Подключаю монитор, клавиатуру… И твердой оверклокерской рукой включаю питание.

Операционная система загрузилась… через несколько минут компьютер завис, после чего он подал звуковой сигнал и отключился. Такой вот, не побоюсь этого слова, конфуз. Пришлось перезагрузиться и посмотреть в BIOS температуру процессора. А температура оказалась выше 80 градусов по подсокетному датчику и продолжала расти. Вот это сюрприз. Пришлось тут же выключить компьютер. Когда системный блок остыл, я еще раз включил компьютер и стал из BIOS наблюдать рост температуры процессора. За считанные минуты температура опять поднялась до 80градусов. Тепловые трубки нагрелись только на пару сантиметров около теплосъемника, а выше были абсолютно холодными. Было полное ощущение, что трубки тепло совершенно не передают! Как же так, я же их проверял. Один конец трубки опускал в стакан с горячей водой и через секунду другой конец нагревался. Сравнивал с обычной медной трубкой такого же диаметра. У той другой конец не нагревался вообще. Вода в стакане остывала быстрее. В чем же дело?

И тут сразу вспомнилось письмо, которое мне недавно написал Mortis.

Вот цитата из этого письма:

«Я пробовал изготовить конструкцию, аналогичную кулермастеровской (по-моему) - два обычных радиатора, соединенных ребрами друг к другу. Сначала такой вариант (трубки на термопасте)

Потом такой (трубки запаяны сплавом Вуда).


Результат в обоих случаях один, т.е. термоинтерфейс вроде как ни при чем. А происходит вот что: до 50 градусов греется только нижний радиатор, затем разогреваются трубки (но ничего не передают - верхний радиатор холодный) и только когда на трубках уже палец держать невозможно, начинает греться верхний. На процессоре к этому моменту уже около 90 градусов, понятное дело. Если же врубить вентиляторы, то верхний радиатор так и остается холодным.

    В последних сериях этих трубок Залман вполне мог сменить жидкость, я свои больше года назад брал.

    Меня могли подвести огрехи пайки или сверления.

    Возможно, имеет значение на какую глубину трубки заходят в радиатор, т.е. площадь контакта. U-образные, которые у меня на МТХ"овской видеокарте стоят, работают в лучшем виде - там они насквозь через всю подошву радиатора идут. Или просто другой хладагент? »

Второй такой же случай. В чем же все-таки дело? В трубках? Или японец - лгун? Но трубки вне кулера работают. Еще раз проанализировав ситуацию, я пришел к выводу, что Mortis все-таки прав. Дело в глубине погружения трубок в теплосъемник. Но что бы глубже погрузить трубки в теплосъемник, их надо разогнуть. А как это сделать, если они такие хрупкие? Думал, гадал и в результате такого вот бюджетного решения, проявив недюжинную усидчивость и чудеса силы воли, трубки я все же разогнул. Хотя при этом сломал еще одну.


Чтобы не раздавить и не пробить трубку, я в несколько раз сложил газету и через нёе, крайне осторожно, разгибал пассатижами. Очень медленно, по немногу, по всему радиусу загиба. Теперь я получил возможность поглубже поместить трубки в медный теплосъемник.



А трубки я с двух сторон «обжал» двумя радиаторами. Как у Нумано.

Монтирую второй вариант кулера в корпус и уже не так нагло и самонадеянно, а я даже сказал бы что скромно, включаю. И сразу в BIOS.

На всякий случай, понижаю частоту работы процессора до 1100 MHz. И как зачарованный смотрю на температуру процессора. Через половину часа она остановилась на 35 градусах. И больше не увеличивалась. Пощупав трубки, я убедился, что они равномерно теплые. Заработало! Теперь можно загрузить Windows и протестировать получившийся кулер. Чтобы прогреть процессор, я по привычке включил 3DMark03. Хотя, возможно, это и не очень правильно. И прокручивал его в течении часа.

Температура процессора (по подсокетному датчику, смотрел в BIOS) поднялась до 52 градусов, при комнатной температуре 25. Многовато, но в пределах нормы. Правда, на пониженной частоте. Но радиаторы я ставил заведомо невеликие. И греются они прилично.

Что ж, пора делать выводы. Радиаторы имеют явно недостаточную площадь поверхности. Я пробовал обдувать их вентилятором – температура сразу понижалась. Экспериментом с обдувом я подтвердил гипотезу, что не хватает площади поверхности. Если бы дело было в трубках, температура бы не изменилась. Целью статьи и экспериментов являлось подтверждение возможности изготовления безвентиляторного кулера на основе тепловых трубок из ZM-2HC2 в домашних условиях. Мне кажется, что это удалось. И поэтому с обдувом получившегося кулера я не возился. Теперь можно оставить изделие «как есть» и пользоваться, как говорилось выше, компьютером для Интернет и работы в Word. А можно все-таки разориться, купить большой радиатор и пользоваться в номинальном режиме, а может и разогнать…

Александр Удалов aka Clear66
udalov777 (a) rambler.ru
01 /03.2005

Самым энергоемким в компьютере является процессор и отвод выделяемой тепловой энергии является актуальной задачей, особенно когда температура окружающей среды высокая. От температуры нагрева процессора зависит не только стабильность и долговечность его работы, но быстродействие, о чем производители процессоров обычно умалчивают.

В подавляющем числе компьютеров система охлаждения процессора выполнена с игнорированием элементарных законов физики. Кулер системы работает в режиме короткого замыкания, так как нет экрана, исключающего возможность всасывания кулером горячего воздуха, выходящего из радиатора процессора. В результате эффективность работы системы охлаждения процессора не превышает 50%. В дополнение, охлаждение производится воздухом, подогретым другими компонентами и узлами, размещенными в системном блоке.

Иногда в системном блоке на задней стенке устанавливают дополнительный кулер, но это не лучшее решение. Дополнительный кулер работает на выталкивание воздуха из системного блока в окружающую среду, как и кулер блока питания. В результате эффективность обоих кулеров намного ниже, если бы они работали по отдельности - один всасывал воздух в системный блок, а другой выталкивал. В результате потребляется дополнительная электроэнергия и что самое не приятное, появляется дополнительный акустический шум.


Предлагаемая конструкция системы охлаждения процессора освобождена от вышеперечисленных недостатков, проста в реализации и обеспечивает высокую эффективность охлаждения процессора и как следствие, других компонентов материнской платы. Идея не новая и простая, воздух для охлаждения радиатора процессора берется из-за пределов системного блока, то есть из помещения.

Решил улучшить систему охлаждения процессора своего компьютера, когда на глаза попался конструктив от системы охлаждения брендового, морально устаревшего системного блока.

Осталось закрепить эту деталь в системном блоке и соединить с кулером процессора. Так как длина патрубка была недостаточной, пришлось ее нарастить с помощью полиэтиленовой ленты, свитой в трубку. Диаметр трубки выбран с учетом плотной посадки на корпусе кулера процессора. Чтобы лента не развилась, она зафиксирована металлической скобкой с помощью степлера.

Система закреплена с помощью самостоятельно изготовленных двух уголков саморезами к задней стенке системного блока. Точное позиционирование относительно центра кулера достигнуто за счет длин сторон уголков.

Такая простая конструкция позволила практически исключить поступление горячего воздуха из системного блока в систему охлаждения процессора.

В крышке моего системного блока уже было готовое отверстие, что упростило работу. Но сделать самостоятельно отверстие не сложно, нужно спроецировать точку центра кулера на боковую крышку, циркулем начертить окружность, чуть меньше диаметра трубки. Просверлить сверлом диаметром 2,5-3 мм с шагом 3,5 мм по всей длине линии окружности отверстия. Точки сверления обязательно нужно предварительно наметить керном. Затем рассверлить просверленные отверстия сверлом диаметром 4 мм. Края полученного отверстия обработать круглым напильником. Останется только установить декоративную решетку, хотя она не обязательна.

В качестве воздуховода с успехом можно использовать пластиковую бутылку от напитков. Если подходящего диаметра нет, то можно взять большего, разрезать вдоль и сшить нитками. Высокая герметичность тут не обязательна. Закрепить трубку можно и маленькими винтами непосредственно к корпусу кулера. Главное, обеспечить подачу воздуха в систему охлаждения процессора извне.

Измерения температуры показали высокую эффективность сделанной системы охлаждения процессора Pentium 2,8 ГГц. При 10% нагрузке процессора, при температуре окружающей среды 20°С, температура процессора не превышала 30°С, на ощупь радиатор был холодным. При этом кулер эффективно охлаждал радиатор в режиме самых низких оборотов.

Основные детали
  • Водоблок (или теплообменник)
  • Центробежный водяной насос (помпа) мощностью 600 литров/ч.
  • Радиатор охлаждения (автомобильный)
  • Расширительный резервуар под теплоноситель (воду)
  • Шланги 10-12 мм;
  • Вентиляторы диаметром 120мм (4 штуки)
  • Источник питания для вентиляторов
  • Расходные материалы
Водоблок

Основная задача водорблока это быстро забрать у процессора тепло и передать его теплоносителю. Для данных целей наиболее подходит медь. Возможно изготовление теплообменника и из алюминия, но его теплопроводность (230Вт/(м*К)) вдвое меньше меди (395,4 Вт/(м*К)). Также немаловажно устройство водоблока (или теплообменника). Устройство теплообменника представляет собой один или несколько непрерывных каналов, проходящих через весь внутренний объем водоблока. При этом важно максимально увеличить поверхность соприкосновения с водой и избежать застоев воды. Для увеличения поверхности обычно используют частые надрезы на стенках водоблока или устанавливают мелкие игольчатые радиаторы.

Я не пытался сделать что-то сложное, поэтому начал делать простую ёмкость для воды с двумя отверстиями для трубок. За основу был взят латунный соединитель для труб, а основанием стала медная пластина толщиной 2 миллиметра. Сверху в такую же пластину вставляются две медные трубки диаметра шланга. Всё запаивается оловянно-свинцовым припоем. Делая водоблок побольше я сначала не задумывался о его весе. В собранном виде со шлангами и водой на материнской плате будет висеть более 300 грамм, и для облегчения пришлось использовать дополнительные крепления для шлангов.

  • Материал: медь, латунь
  • Диаметр штуцеров: 10 мм
  • Пайка: Оловянно-свинцовый припой
  • Способ крепления: винтами к креплению магазинного кулера, шланги крепятся хомутами
  • Цена: около 100 рублей
Выпиливание и пайка

Помпа

Помпы бывают внешние или погружные. Первая лишь пропускает ее через себя, а вторая ее выталкивает, будучи в нее погружена. Здесь использована погружная, помещается в ёмкость с водой. Внешнюю найти не удалось, искал в зоомагазинах, а там только погружные аквариумные помпы. Мощность от 200 до 1400 литров в час цена от 500 до 2000 рублей. Питается от розетки, мощность от 4 до 20 ватт. На твёрдой поверхности помпа сильно шумит, а на поролоне шум незначителен. В качестве резервуара для воды использовалась банка, вмещающая в себя помпу. Для присоединения силиконовых шлангов были использованы стальные хомуты на винтах. Для лёгкого надевания и снятия шлангов можно использовать смазку без запаха.

  • Максимальная производительность - 650 л/ч.
  • Высота подъема воды – 80 см
  • Напряжение – 220В
  • Мощность – 6 Вт
  • Цена - 580 рублей
Радиатор

Насколько качественным будет радиатор, во многом определит эффективность всей системы водяного охлаждения. Тут использован автомобильный радиаторсистемы отопления (печка) от девятки, куплен старый на барахолке за 100 рублей. К сожалению, интервал между пластинами в нём оказался меньше миллиметра, поэтому пришлось вручную раздвигать и сжимать пластины по нескольку штук, чтобы слабые китайские вентиляторы смогли продуть его насквозь.

  • Материал трубок: медь
  • Материал ребер: алюминий
  • Размер: 35х20х5 см
  • Диаметр штуцеров: 14 мм
  • Цена: 100 рублей
Обдув

Обдувается радиатор двумя парами 12 см вентиляторами спереди и сзади. Запитать 4 вентилятора от системного блока во время проверки не представилось возможным, поэтому пришлось собрать простой блок питания на 12 вольт. Вентиляторы были соединены параллельно, и подключены с учётом полярности. Это важно, иначе с большой вероятностью вентилятор можно испортить. У кулера 3 провода: черный (земля), красный (+12В) и желтый (значение скорости).

  • Материал: китайский пластик
  • Диаметр: 12 см
  • Напряжение: 12 В
  • Ток: 0.15 А
  • Цена: 80*4 рублей
Хозяйке на заметку

Цель снижения шума я не ставил из-за стоимости вентиляторов. Так вентилятор за 100 рублей изготовлен из чёрного пластика и потребляет 150 миллиампер тока. Именно такие я использовал для обдува радиатора, дует слабо, зато дешёвый. Уже за 200-300 рублей можно найти намного более мощные и красивые модели с потреблением 300-600 миллиампер, но на максимальных оборотах они шумные. Это решается силиконовыми прокладками и антивибрационными креплениями, но для меня решающее значение играла минимальная стоимость.

Блок питания

Если готового под рукой нет, можно собрать простейший из подручных материалов и микросхемы, которая стоит меньше 100 рублей. Для 4 вентиляторов необходим ток 0,6 А и немного про запас. Микросхема даёт примерно 1 ампер при напряжении от 9 до 15 вольт в зависимости от модели. Можно использовать любую модель, выставляя 12 вольт переменным резистором.

  • Инструменты и паяльник
  • Радиодетали
  • Микросхема
  • Провода и изоляция
  • Цена: 100 рублей

Установка и проверка

Аппаратная часть
  • Процессор: Intel Core i7 960 3.2 ГГц / 4.3 ГГц
  • Системная плата: ASUS Rampage 3 formula
  • Блок питания: OCZ ZX1250W
  • Термопаста: АЛ-СИЛ 3
Программное обеспечение
  • Windows 7 x64 SP1
  • Prime 95
  • RealTemp 3.69
  • Cpu-z 1.58

Особо долго тестировать не пришлось, т.к. результаты не приближались даже к возможностям воздушного кулера. Радиатор СВО обдувался пока только двумя китайскими вентиляторами из 4х возможных и ещё не были раздвинуты шире пластины для лучшего продува. Так в режиме экономии энергии и нулевой загрузке температура процессора на воздухе примерно 42 градуса, а на самодельной СВО 57 градусов. Запуск теста prime95 на 4 потока (50% загрузка) прогревает до 65 градусов на воздухе и до 100 градусов за 30 секунд на СВО. При разгоне результаты ещё хуже.

Была предпринята попытка сделать новый водоблок с более тонкой (0,5 мм) медной пластиной основания и почти втрое более вместительный внутри, правда из тех же материалов (медь + латунь). В радиаторе раздвинуты пластины для лучшего продува и добавлено ещё два вентилятора, теперь их 4 штуки. В этот раз в режиме экономии энергии и нулевой загрузке температура процессора на воздухе примерно 42 градуса, а на самодельной СВО примерно 55 градусов. Запуск теста prime95 на 4 потока (50% загрузка) прогревает до 65 градусов на воздухе и до 83 градусов на СВО. Но при этом вода в контуре начинает довольно быстро нагреваться и уже через 5-7 минут температура процессора достигает 96 градусов. Это показания без разгона.

Собирать СВО было, конечно интересно, но применить её для охлаждения современного процессора не удалось. В старых компьютерах отлично справляется штатный кулер. Может быть я подобрал некачественные материалы или неправильно изготавливал водоблок, но собрать СВО менее, чем за 1000 рублей в домашних условиях мне не представляется возможным. Почитав обзоры бюджетных готовых СВО, имеющихся в магазинах я не надеялся, что моя самоделка будет лучше хорошего воздушного кулера. Для себя сделал вывод, что не стоит экономить в будущем на комплектующих для СВО. Когда решусь покупать СВО для разгона, однозначно буду собирать её сам из отдельных деталей.

Видеоролик

mob_info