Средства синхронизации потоков в ОС Windows (критические секции, мьютексы, семафоры, события). Объекты синхронизации в Windows Семафоры windows

Лекция № 9. Синхронизация процессов и потоков

1. Цели и средства синхронизации.

2. Механизмы синхронизации.

1.Цели и средства синхронизации

Существует достаточно обширный класс средств операционной системы, с по­мощью которых обеспечивается взаимная синхронизация процессов и потоков. Потребность в синхронизации потоков возникает только в мультипрограммной операционной системе и связана с совместным использованием аппаратных и информационных ресурсов вычислительной системы. Синхронизация необходи­ма для исключения гонок и тупиков при обмене данными между потоками, раз­делении данных, при доступе к процессору и устройствам ввода-вывода.

Во многих операционных системах эти средства называются средствами межпро­цессного взаимодействия - Inter Process Communications (IPC), что отражает историческую первичность понятия «процесс» по отношению к понятию «поток». Обычно к средствам IPC относят не только средства межпроцессной синхрони­зации, но и средства межпроцессного обмена данными.

Выполнение потока в мультипрограммной среде всегда имеет асинхронный ха­рактер. Очень сложно с полной определенностью сказать, на каком этапе выпол­нения будет находиться процесс в определенный момент времени. Даже в однопрограммном режиме не всегда можно точно оценить время выполнения задачи. Это время во многих случаях существенно зависит от значения исходных дан­ных, которые влияют на количество циклов, направления разветвления програм­мы, время выполнения операций ввода-вывода и т. п. Так как исходные данные в разные моменты запуска задачи могут быть разными, то и время выполнения от­дельных этапов и задачи в целом является весьма неопределенной величиной.


Еще более неопределенным является время выполнения программы в мульти­программной системе. Моменты прерывания потоков, время нахождения их в очередях к разделяемым ресурсам, порядок выбора потоков для выполнения - все эти события являются результатом стечения многих обстоятельств и могут быть интерпретированы как случайные. В лучшем случае можно оценить веро­ятностные характеристики вычислительного процесса, например вероятность его завершения за данный период времени.

Таким образом, потоки в общем случае (когда программист не предпринял спе­циальных мер по их синхронизации) протекают независимо, асинхронно друг другу. Это справедливо как по отношению к потокам одного процесса, выпол­няющим общий программный код, так и по отношению к потокам разных про­цессов, каждый из которых выполняет собственную программу.

Любое взаимодействие процессов или потоков связано с их синхронизацией, ко­торая заключается в согласовании их скоростей путем приостановки потока до наступления некоторого события и последующей его активизации при наступ­лении этого события. Синхронизация лежит в основе любого взаимодействия потоков, связано ли это взаимодействие с разделением ресурсов или с обменом данными. Например, поток-получатель должен обращаться за данными только после того, как они помещены в буфер потоком-отправителем. Если же поток-получатель обратился к данным до момента их поступления в буфер, то он дол­жен быть приостановлен.

При совместном использовании аппаратных ресурсов синхронизация также со­вершенно необходима. Когда, например, активному потоку требуется доступ к последовательному порту, а с этим портом в монопольном режиме работает дру­гой поток, находящийся в данный момент в состоянии ожидания, то ОС приос­танавливает активный поток и не активизирует его до тех пор, пока нужный ему порт не освободится. Часто нужна также синхронизация с событиями, внешними по отношению к вычислительной системе, например реакции на нажатие комби­нации клавиш Ctrl+C.

Ежесекундно в системе происходят сотни событий, связанных с распределением и освобождением ресурсов, и ОС должна иметь надежные и производительные средства, которые бы позволяли ей синхронизировать потоки с происходящими в системе событиями.

Для синхронизации потоков прикладных программ программист может исполь­зовать как собственные средства и приемы синхронизации, так и средства опера­ционной системы. Например, два потока одного прикладного процесса могут ко­ординировать свою работу с помощью доступной для них обоих глобальной логической переменной, которая устанавливается в единицу при осуществлении некоторого события, например выработки одним потоком данных, нужных для продолжения работы другого. Однако во многих случаях более эффективными или даже единственно возможными являются средства синхронизации, предос­тавляемые операционной системой в форме системных вызовов. Так, потоки, принадлежащие разным процессам, не имеют возможности вмешиваться каким-либо образом в работу друг друга. Без посредничества операционной системы они не могут приостановить друг друга или оповестить о произошедшем собы­тии. Средства синхронизации используются операционной системой не только для синхронизации прикладных процессов, но и для ее внутренних нужд.

Обычно разработчики операционных систем предоставляют в распоряжение при­кладных и системных программистов широкий спектр средств синхронизации. Эти средства могут образовывать иерархию, когда на основе более простых средств строятся более сложные, а также быть функционально специализированными, например средства для синхронизации потоков одного процесса, средства для синхронизации потоков разных процессов при обмене данными и т. д. Часто функциональные возможности разных системных вызовов синхронизации пере­крываются, так что для решения одной задачи программист может воспользо­ваться несколькими вызовами в зависимости от своих личных предпочтений.


Необходимость синхронизации и гонки

Пренебрежение вопросами синхронизации в многопоточной системе может при­вести к неправильному решению задачи или даже к краху системы. Рассмотрим, например (рис. 4.16), задачу ведения базы данных клиентов некоторого предпри­ятия. Каждому клиенту отводится отдельная запись в базе данных, в которой среди прочих полей имеются поля Заказ и Оплата. Программа, ведущая базу дан­ных, оформлена как единый процесс, имеющий несколько потоков, в том числе поток А, который заносит в базу данных информацию о заказах, поступивших от клиентов, и поток В, который фиксирует в базе данных сведения об оплате кли­ентами выставленных счетов. Оба эти потока совместно работают над общим файлом базы данных, используя однотипные алгоритмы, включающие три шага.

2. Внести новое значение в поле Заказ (для потока А) или Оплата (для потока В).

3. Вернуть модифицированную запись в файл базы данных.

https://pandia.ru/text/78/239/images/image002_238.gif" width="505" height="374 src=">

Рис. 4.17. Влияние относительных скоростей потоков на результат решения задачи

Критическая секция

Важным понятием синхронизации потоков является понятие «критической сек­ции» программы. Критическая секция - это часть программы, результат выпол­нения которой может непредсказуемо меняться, если переменные, относящиеся к этой части программы, изменяются другими потоками в то время, когда вы­полнение этой части еще не завершено. Критическая секция всегда определяется по отношению к определенным критическим данным, при несогласованном из­менении которых могут возникнуть нежелательные эффекты. В предыдущем при­мере такими критическими данными являлись записи файла базы данных. Во всех потоках, работающих с критическими данными, должна быть определена критическая секция. Заметим, что в разных потоках критическая секция состоит в общем случае из разных последовательностей команд.

Чтобы исключить эффект гонок по отношению к критическим данным, необхо­димо обеспечить, чтобы в каждый момент времени в критической секции, свя­занной с этими данными, находился только один поток. При этом неважно, нахо­дится этот поток в активном или в приостановленном состоянии. Этот прием называют взаимным исключением. Операционная система использует разные способы реализации взаимного исключения. Некоторые способы пригодны для взаимного исключения при вхождении в критическую секцию только потоков одного процесса, в то время как другие могут обеспечить взаимное исключение и для потоков разных процессов.

Самый простой и в то же время самый неэффективный способ обеспечения вза­имного исключения состоит в том, что операционная система позволяет потоку запрещать любые прерывания на время его нахождения в критической секции. Однако этот способ практически не применяется, так как опасно доверять управ­ление системой пользовательскому потоку - он может надолго занять процес­сор, а при крахе потока в критической секции крах потерпит вся система, потому что прерывания никогда не будут разрешены.

2. Механизмы синхронизации.

Блокирующие переменные

Для синхронизации потоков одного процесса прикладной программист может использовать глобальные блокирующие переменные. С этими переменными, к ко­торым все потоки процесса имеют прямой доступ, программист работает, не об­ращаясь к системным вызовам ОС.

Которые бы запре­щали прерывания на протяжении всей операции проверки и установки.

Реализация взаимного исключения описанным выше способом имеет существен­ный недостаток: в течение времени, когда один поток находится в критической секции, другой поток, которому требуется тот же ресурс, получив доступ к про­цессору, будет непрерывно опрашивать блокирующую переменную, бесполезно тратя выделяемое ему процессорное время, которое могло бы быть использовано для выполнения какого-нибудь другого потока. Для устранения этого недостат­ка во многих ОС предусматриваются специальные системные вызовы для рабо­ты с критическими секциями.

На рис. 4.19 показано, как с помощью этих функций реализовано взаимное ис­ключение в операционной системе Windows NT. Перед тем как начать измене­ние критических данных, поток выполняет системный вызов EnterCriticalSection(). В рамках этого вызова сначала выполняется, как и в предыдущем случае, проверка блокирующей переменной, отражающей состояние критического ресур­са. Если системный вызов определил, что ресурс занят (F(D) = 0), он в отличие от предыдущего случая не выполняет циклический опрос, а переводит поток в состояние ожидания (D) и делает отметку о том, что данный поток должен быть активизирован, когда соответствующий ресурс освободится. Поток, который в это время использует данный ресурс, после выхода из критической секции дол­жен выполнить системную функцию LeaveCriticalSectionO, в результате чего блокирующая переменная принимает значение, соответствующее свободному состоянию ресурса (F(D) = 1), а операционная система просматривает очередь ожидающих этот ресурс потоков и переводит первый поток из очереди в состоя­ние готовности.

Накладные расходы" href="/text/category/nakladnie_rashodi/" rel="bookmark">накладные расходы ОС по реализации функции входа в крити­ческую секцию и выхода из нее могут превысить полученную экономию.

Семафоры

Обобщением блокирующих переменных являются так называемые семафоры Дийкстры. Вместо двоичных переменных Дийкстра (Dijkstra) предложил исполь­зовать переменные, которые могут принимать целые неотрицательные значения. Такие переменные, используемые для синхронизации вычислительных процес­сов, получили название семафоров.

Для работы с семафорами вводятся два примитива, традиционно обозначаемых Р и V. Пусть переменная S представляет собой семафор. Тогда действия V(S) и P(S) определяются следующим образом.

* V(S): переменная S увеличивается на 1 единым действием. Выборка, наращи­вание и запоминание не могут быть прерваны. К переменной S нет доступа другим потокам во время выполнения этой операции.

* P(S): уменьшение S на 1, если это возможно. Если 5=0 и невозможно умень­шить S, оставаясь в области целых неотрицательных значений, то в этом случае поток, вызывающий операцию Р, ждет, пока это уменьшение станет возможным. Успешная проверка и уменьшение также являются неделимой операцией.

Никакие прерывания во время выполнения примитивов V и Р недопустимы.

В частном случае, когда семафор S может принимать только значения 0 и 1, он превращается в блокирующую переменную, которую по этой причине часто на­зывают двоичным семафором. Операция Р заключает в себе потенциальную воз­можность перехода потока, который ее выполняет, в состояние ожидания, в то время как операция V может при некоторых обстоятельствах активизировать дру­гой поток, приостановленный операцией Р.

Рассмотрим использование семафоров на классическом примере взаимодействия двух выполняющихся в режиме мультипрограммирования потоков, один из ко­торых пишет данные в буферный пул, а другой считывает их из буферного пула. Пусть буферный пул состоит из N буферов, каждый из которых может содержать одну запись. В общем случае поток-писатель и поток-читатель могут иметь раз­личные скорости и обращаться к буферному пулу с переменой интенсивностью. В один период скорость записи может превышать скорость чтения, в другой - наоборот. Для правильной совместной работы поток-писатель должен приоста­навливаться, когда все буферы оказываются занятыми, и активизироваться при освобождении хотя бы одного буфера. Напротив, поток-читатель должен приос­танавливаться, когда все буферы пусты, и активизироваться при появлении хотя бы одной записи.

Введем два семафора: е - число пустых буферов, и f - число заполненных буфе­ров, причем в исходном состоянии е = N, a f = 0. Тогда работа потоков с общим буферным пулом может быть описана следующим образом (рис. 4.20).

Поток-писатель прежде всего выполняет операцию Р(е), с помощью которой он проверяет, имеются ли в буферном пуле незаполненные буферы. В соответствии с семантикой операции Р, если семафор е равен 0 (то есть свободных буферов в данный момент нет), то поток-писатель переходит в состояние ожидания. Если же значением е является положительное число, то он уменьшает число свободных буферов, записывает данные в очередной свободный буфер и после этого наращи­вает число занятых буферов операцией V(f). Поток-читатель действует анало­гичным образом, с той разницей, что он начинает работу с проверки наличия заполненных буферов, а после чтения данных наращивает количество свободных буферов.

DIV_ADBLOCK860">

Семафор может использоваться и в качестве блокирующей переменной. В рас­смотренном выше примере, для того чтобы исключить коллизии при работе с разделяемой областью памяти, будем считать, что запись в буфер и считывание из буфера являются критическими секциями. Взаимное исключение будем обес­печивать с помощью двоичного семафора b (рис. 4.21). Оба потока после провер­ки доступности буферов должны выполнить проверку доступности критической секции.

https://pandia.ru/text/78/239/images/image007_110.jpg" width="495" height="639 src=">

Рис. 4.22. Возникновение взаимных блокировок при выполнении программы

ПРИМЕЧАНИЕ

Тупиковые ситуации надо отличать от простых очередей, хотя те и другие возникают при совместном использовании ресурсов и внешне выглядят похоже: поток приостанавлива­ется и ждет освобождения ресурса. Однако очередь - это нормальное явление, неотъемле­мый признак высокого коэффициента использования ресурсов при случайном поступле­нии запросов. Очередь появляется тогда, когда ресурс недоступен в данный момент, но освободится через некоторое время, позволив потоку продолжить выполнение. Тупик же, что видно из его названия, является в некотором роде неразрешимой ситуацией. Необхо­димым условием возникновения тупика является потребность потока сразу в нескольких ресурсах.

В рассмотренных примерах тупик был образован двумя потоками, но взаимно блокировать друг друга может и большее число потоков. На рис. 2.23 показано такое распределение ресурсов Ri между несколькими потоками Tj, которое при­вело к возникновению взаимных блокировок. Стрелки обозначают потребность потока в ресурсах. Сплошная стрелка означает, что соответствующий ресурс был выделен потоку, а пунктирная стрелка соединяет поток с тем ресурсом, который необходим, но не может быть пока выделен, поскольку занят другим потоком. Например, потоку Т1 для выполнения работы необходимы ресурсы R1 и R2, из ко­торых выделен только один - R1, а ресурс R2 удерживается потоком Т2. Ни один из четырех показанных на рисунке потоков не может продолжить свою работу, так как не имеет всех необходимых для этого ресурсов.

Невозможность потоков завершить начатую работу из-за возникновения вза­имных блокировок снижает производительность вычислительной системы. По­этому проблеме предотвращения тупиков уделяется большое внимание. На тот случай, когда взаимная блокировка все же возникает, система должна предоста­вить администратору-оператору средства, с помощью которых он смог бы распо­знать тупик, отличить его от обычной блокировки из-за временной недоступности ресурсов. И наконец, если тупик диагностирован, то нужны средства для снятия взаимных блокировок и восстановления нормального вычислительного процесса.

Владелец" href="/text/category/vladeletc/" rel="bookmark">владельцем , устанавливая его в несигнальное состояние, и входит в критическую секцию. После того как поток выполнил работу с критическими данными, он «отдает» мьютекс, устанавливая его в сигнальное состояние. В этот момент мьютекс сво­боден и не принадлежит ни одному потоку. Если какой-либо поток ожидает его освобождения, то он становится следующим владельцем этого мьютекса, одно­временно мьютекс переходит в несигнальное состояние.

Объект-событие (в данном случае слово «событие» используется в узком смыс­ле, как обозначение конкретного вида объектов синхронизации) обычно исполь­зуется не для доступа к данным, а для того, чтобы оповестить другие потоки о том, что некоторые действия завершены. Пусть, например, в некотором прило­жении работа организована таким образом, что один поток читает данные из файла в буфер памяти, а другие потоки обрабатывают эти данные, затем первый поток считывает новую порцию данных, а другие потоки снова ее обрабатывают и так далее. В начале работы первый поток устанавливает объект-событие в не­сигнальное состояние. Все остальные потоки выполнили вызов Wait(X), где X - указатель события, и находятся в приостановленном состоянии, ожидая наступ­ления этого события. Как только буфер заполняется, первый поток сообщает об этом операционной системе, выполняя вызов Set(X). Операционная система просматривает очередь ожидающих потоков и активизирует все потоки, которые ждут этого события.

Сигналы

Сигнал дает возможность задаче реагировать на событие, источником которого может быть операционная система или другая задача. Сигналы выбывают пре­рывание задачи и выполнение заранее предусмотренных действий. Сигналы мо­гут вырабатываться синхронно, то есть как результат работы самого процесса, а могут быть направлены процессу другим процессом, то есть вырабатываться асинхронно. Синхронные сигналы чаще всего приходят от системы прерываний процессора и свидетельствуют о действиях процесса, блокируемых аппаратурой, например деление на нуль, ошибка адресации, нарушение защиты памяти и т. д.

Примером асинхронного сигнала является сигнал с терминала. Во многих ОС предусматривается оперативное снятие процесса с выполнения. Для этого поль­зователь может нажать некоторую комбинацию клавиш (Ctrl+C, Ctrl+Break), в ре­зультате чего ОС вырабатывает сигнал и направляет его активному процессу. Сигнал может поступить в любой момент выполнения процесса (то есть он явля­ется асинхронным), требуя от процесса немедленного завершения работы. В дан­ном случае реакцией на сигнал является безусловное завершение процесса.

В системе может быть определен набор сигналов. Программный код процесса, которому поступил сигнал, может либо проигнорировать его, либо прореагиро­вать на него стандартным действием (например, завершиться), либо выполнить специфические действия, определенные прикладным программистом. В послед­нем случае в программном коде необходимо предусмотреть специальные систем­ные вызовы, с помощью которых операционная система информируется, какую процедуру надо выполнить в ответ на поступление того или иного сигнала.

Сигналы обеспечивают логическую связь между процессами, а также между про­цессами и пользователями (терминалами). Поскольку посылка сигнала преду­сматривает знание идентификатора процесса, то взаимодействие посредством сигналов возможно только между родственными процессами, которые могут по­лучить данные об идентификаторах друг друга.

В распределенных системах, состоящих из нескольких процессоров, каждый из которых имеет собственную оперативную память, блокирующие переменные, се­мафоры, сигналы и другие аналогичные средства, основанные на разделяемой памяти, оказываются непригодными. В таких системах синхронизация может быть реализована только посредством обмена сообщениями.

Синхронизация потоков

При построении многопоточного приложения необходимо гарантировать, что любая часть разделяемых данных защищена от возможности изменения их значений множеством потоков. Учитывая, что все потоки в AppDomain имеют параллельный доступ к разделяемым данным приложения, представьте, что может случиться, если несколько потоков одновременно обратятся к одному и тому же элементу данных. Поскольку планировщик потоков случайным образом будет приостанавливать их работу, что если поток А будет прерван до того, как завершит свою работу? А вот что: поток В после этого прочтет нестабильные данные.

Чтобы проиллюстрировать проблему, связанную с параллелизмом, давайте рассмотрим следующий пример:

Public class MyTheard { public void ThreadNumbers() { // Информация о потоке Console.WriteLine("{0} поток использует метод ThreadNumbers",Thread.CurrentThread.Name); // Выводим числа Console.Write("Числа: "); for (int i = 0; i

Прежде чем посмотреть на тестовые запуски, давайте еще раз проясним проблему. Первичный поток внутри этого домена приложений начинает свое существование, порождая десять вторичных рабочих потоков. Каждый рабочий поток должен вызвать метод ThreadNumbers() на одном и том же экземпляре MyTheard. Учитывая, что никаких мер для блокировки разделяемых ресурсов этого объекта (консоли) не предпринималось, есть хороший шанс, что текущий поток будет отключен, прежде чем метод ThreadNumbers() сможет напечатать полные результаты. Поскольку в точности не известно, когда это может случиться (и может ли вообще), будут получаться непредвиденные результаты. Например, может появиться следующий вывод:

Ясно, что здесь присутствует определенная проблема. Как только каждый поток требует от MyTheard печати числовых данных, планировщик потоков меняет их местами в фоновом режиме. В результате получается несогласованный вывод. Для решения подобных проблем в C# используется синхронизация .

В основу синхронизации положено понятие блокировки, посредством которой организуется управление доступом к кодовому блоку в объекте. Когда объект заблокирован одним потоком, остальные потоки не могут получить доступ к заблокированному кодовому блоку. Когда же блокировка снимается одним потоком, объект становится доступным для использования в другом потоке.

Средство блокировки встроено в язык C#. Благодаря этому все объекты могут быть синхронизированы. Синхронизация организуется с помощью ключевого слова lock . Она была предусмотрена в C# с самого начала, и поэтому пользоваться ею намного проще, чем кажется на первый взгляд. В действительности синхронизация объектов во многих программах на C# происходит практически незаметно.

Ниже приведена общая форма блокировки:

lock(lockObj) { // синхронизируемые операторы }

где lockObj обозначает ссылку на синхронизируемый объект. Если же требуется синхронизировать только один оператор, то фигурные скобки не нужны. Оператор lock гарантирует, что фрагмент кода, защищенный блокировкой для данного объекта, будет использоваться только в потоке, получающем эту блокировку. А все остальные потоки блокируются до тех пор, пока блокировка не будет снята. Блокировка снимается по завершении защищаемого ею фрагмента кода.

Блокируемым считается такой объект, который представляет синхронизируемый ресурс. В некоторых случаях им оказывается экземпляр самого ресурса или же произвольный экземпляр объекта, используемого для синхронизации. Следует, однако, иметь в виду, что блокируемый объект не должен быть общедоступным, так как в противном случае он может быть заблокирован из другого, неконтролируемого в программе фрагмента кода и в дальнейшем вообще не разблокируется.

В прошлом для блокировки объектов очень часто применялась конструкция lock (this). Но она пригодна только в том случае, если this является ссылкой на закрытый объект. В связи с возможными программными и концептуальными ошибками, к которым может привести конструкция lock (this), применять ее больше не рекомендуется. Вместо нее лучше создать закрытый объект, чтобы затем заблокировать его.

Давайте модифицируем предыдущий пример добавив в него синхронизацию:

Public class MyTheard { private object threadLock = new object(); public void ThreadNumbers() { // Используем маркер блокировки lock (threadLock) { // Информация о потоке Console.WriteLine("{0} поток использует метод ThreadNumbers", Thread.CurrentThread.Name); // Выводим числа Console.Write("Числа: "); for (int i = 0; i

Как только поток войдет в контекст lock, маркер блокировки (в данном случае - текущий объект) станет недоступным другим потокам до тех пор, пока блокировка не будет снята по выходе из контекста lock. Таким образом, если поток А захватит маркер блокировки, другие потоки не смогут войти ни в один из контекстов, использующих тот же маркер, до тех пор, пока поток А не освободит его.

. Синхронизация потоков

Для синхронизации действий, выполняемых разными потоками существует несколько различных способов. Условно их можно разделить на следующие:

· синхронизация с помощью глобальных переменных

· синхронизация с помощью обмена событиями

· синхронизация с помощью специальных объектов (событий, семафоров, критических секций, объектов исключительного владения и других)

Первый метод синхронизации следует признать самым неудачным, так как он требует постоянного опроса состояния глобальной переменной. У этого метода есть и более серьезные недостатки - так, например, возможна полная блокировка потоков, если поток, ожидающий изменения глобальной переменной имеет более высокий приоритет, чем поток, изменяющий эту переменную. Правда, его можно несколько улучшить - вводя дополнительные временные задержки между последовательными опросами.

Второй метод потребует создания объектов, способных получать сообщения или извещения о выполнении некоторых действий. Это могут быть окна, файлы (например, при использовании асинхронных операций или операций с уведомлением), каталоги и т.д. Во многих случаях может быть удобно создать невидимое окно, участвующее в обмене сообщениями или ожидающее получения сообщений для выполнения тех или иных действий.

Третий метод - синхронизация с помощью специальных объектов - потребует рассмотрения разных объектов и разных методов синхронизации с использованием объектов. В Win32 API существует большое число объектов, которые могут быть применены в качестве синхронизирующих, причем во многих случаях вместо одного объекта может применяться объект другого типа. Поэтому будет интересно рассмотреть несколько основных методов синхронизации с использованием объектов.

Общие представления о методах синхронизации

При рассмотрении способов синхронизации удобно выделить несколько основных способов, применяемых разными операционными системами. В числе таких способов можно выделить четыре метода:

· критические секции

· объекты исключительного владения

· события

· синхронизация группой объектов

Последовательно рассмотрим эти основные методы, используя в качестве примера функции по работе с глобальной кучей. Попробуем абстрактно разобраться со свойствами этих функций, что бы понять, какие методы синхронизации и в каких случаях удобно применять.

Во–первых, глобальную кучу в целом можно рассматривать как некий сложный объект, над которым могут выполняться некоторые операции (пока мы рассматриваем только операции над кучей в целом, не вдаваясь в нюансы работы с отдельными блоками - при необходимости доступ к отдельным блокам кучи должен быть синхронизирован, но это уже не функции кучи, а проблема того, кто пользуется кучей).

Часть операций, например получение указателя на какой–либо блок в куче, не нуждается в изменении самой кучи. То есть функции, осуществляющие подобные операции могут выполняться одновременно разными потоками не конфликтуя друг с другом. Такие функции удобно назвать “читателями” - они не изменяют кучу как единый объект.

Другие операции, например выделение нового блока в куче, требуют внесения изменений в кучу - изменения в цепочке выделяемых блоков. Обычно такие изменения осуществляются не в одном месте, а требуется согласованное внесение изменений в нескольких структурах данных. В процессе такой операции структура кучи какое–то время оказывается нарушенной, вследствие чего одновременное выполнение таких действий должно быть исключено. Такие функции удобно назвать “писателями” - они изменяют кучу как единый объект.

Применительно к куче возможен одновременный доступ нескольких читателей и исключительный - писателей. Более того, если к куче получает доступ писатель, то читатели также должны быть лишены доступа (в других случаях это может быть не так - читатели могут работать одновременно с писателем).

Можно сформулировать несколько правил для работы с таким объектом:

· если к объекту имеет доступ писатель, то ни читатели, ни другие писатели доступа не имеют;

· если к объекту имеет доступ читатель, то возможен одновременный доступ других читателей и запрещен доступ писателям;

· если объект свободен, то первый пришедший писатель или читатель имеет право доступа.

Рассмотренный пример очень удобен, так как подобная ситуация (много читателей, единственный писатель) встречается сплошь и рядом - а стандартного объекта для синхронизации доступа к такому объекту нет. Благодаря этому такой пример становится благодатной почвой для рассмотрения разных способов синхронизации.


Даже при простейшем анализе такой таблицы можно заметить, что писатели находятся в неравном положении - при достаточно большом числе читателей и писателей возможна полная блокировка последних, так как читатели могут получать право одновременного доступа к объекту, так что возможна ситуация, когда объект вообще не будет освобожден для писателей - хоть один читатель да найдется. Для выхода из такой ситуации следует слегка модифицировать реакцию объекта во 1м случае - если имеется ожидающий поток–писатель, то надо разрешить доступ ему, а не читателю. Для полной “симметрии” следует в 4м случае проверять наличие читателей и разрешать им доступ, даже если имеется ожидающий поток–писатель. Такой механизм, хотя и достаточно сложный в реализации, обеспечит более–менее равные права для выполнения потоков разного типа.

Критические секции

Этот синхронизирующий объект может использоваться только локально внутри процесса, создавшего его. Остальные объекты могут быть использованы для синхронизации потоков разных процессов. Название объекта “критическая секция” связано с некоторым абстрактным выделением части программного кода (секции), выполняющего некоторые операции, порядок которых не может быть нарушен. То есть попытка двумя разными потоками одновременно выполнять код этой секции приведет к ошибке.

Например, такой секцией может быть удобно защитить функции–писатели, так как одновременный доступ нескольких писателей должен быть исключен.

Для критической секции вводят две операции:

· войти в секцию;
Пока какой–либо поток находится в критической секции, все остальные потоки при попытке войти в нее будут автоматически останавливаться в ожидании. Поток, уже вошедший в эту секцию, может входить в нее многократно, не ожидая ее освобождения.

· покинуть секцию;
При покидании потоком секции уменьшается счетчик числа вхождений этого потока в секцию, так что секция будет освобождена для других потоков только если поток выйдет из секции столько раз, сколько раз в нее входил. При освобождении критической секции будет пробужден только один поток, ожидающий разрешения на вход в эту секцию.

Вообще говоря, в других API, отличных от Win32 (например, OS/2), критическая секция рассматривается не как синхронизирующий объект, а как фрагмент кода программы, который может исполняться только одним потоком приложения. То есть вход в критическую секцию рассматривается как временное выключение механизма переключения потоков до выхода из этой секции. В Win32 API критические секции рассматриваются как объекты, что приводит к определенной путанице - они очень близки по своим свойствам к неименованным объектам исключительного владения (mutex, см. ниже).

При использовании критических секций надо следить, что бы в секции не выделялись чересчур большие фрагменты кода, так как это может привести к существенным задержкам в выполнении других потоков.

Например, применительно к уже рассмотренным кучам - не имеет смысла все функции по работе с кучей защищать критической секцией, так как функции–читатели могут выполняться параллельно. Более того, применение критической секции даже для синхронизации писателей на самом деле представляется малоудобным - так как для синхронизации писателя с читателями последним все–равно придется входить в эту секцию, что практически приводит к защите всех функций единой секцией.

Можно выделить несколько случаев эффективного применения критических секций:

· читатели не конфликтуют с писателями (защищать надо только писателей);

· все потоки имеют примерно равные права доступа (скажем, нельзя выделить чистых писателей и читателей);

· при построении составных синхронизирующих объектов, состоящих из нескольких стандартных, для защиты последовательных операций над составным объектом.

Объекты исключительного владения

Объекты исключительного владения - mutex (mut ualex clusion) - могут принадлежать только одному потоку одновременно. Соответственно определяются операции над этими объектами:

· затребовать владение объектом;
При запросе владения система проверяет, владеет–ли какой–либо другой поток этим объектом или нет. Если имеется другой поток–владелец, то данный поток останавливается до тех пор, пока объект не освободиться. Как только объект становится свободным, система отдает его во владение новому потоку. Поток, уже владеющий объектом, может многократно вступать во владение им.

· освободить объект;
При освобождении объекта система просматривает, имеются–ли другие потоки, ожидающие освобождения этого объекта. Если имеются, то возобновит работу только один поток, а все остальные продолжат ожидание - объект mutex может быть во владении только у одного потока. Освобождать объект может только тот поток, который им в данный момент владеет, другие потоки этого сделать не могут. Для полного освобождения объекта поток должен столько раз освободить его, сколько раз он затребовал владение с того момента, как ему дали этот объект во владение.


Для программ, использующих несколько потоков или процессов, необходимо, чтобы все они выполняли возложенные на них функции в нужной последовательности. В среде Windows 9x для этой цели предлагается использовать несколько механизмов, обеспечивающих слаженную работу потоков. Эти механизмы называют механизмами синхронизации. Предположим, разрабатывается программа, в которой параллельно работают два потока. Каждый поток обращается к одной разделяемой глобальной переменной. Один поток при каждом обращении к этой переменной выполняет её инкремент, а второй – декремент. При одновременной асинхронной работе потоков неизбежно возникает такая ситуация: - первый поток прочитал значение глобальной переменной в локальную; - ОС прерывает его, так как закончился выделенный ему квант времени процессора, и передаёт управление второму потоку; - второй поток также считал значение глобальной переменной в локальную, декрементировал её и записал новое значение обратно; - ОС вновь передаёт управление первому потоку, тот, ничего не зная о действиях второго потока, инкрементирует свою локальную переменную и записывает её значение в глобальную. Очевидно, что изменения, внесённые вторым потоком, будут утеряны. Для исключения подобных ситуаций необходимо разделить во времени использование совместных данных. В таких случаях используются механизмы синхронизации, которые обеспечивают корректную работу нескольких потоков. Средства синхронизации в ОС Windows : 1) критическая секция (Critical Section ) – это объект, который принадлежи процессу, а не ядру. А значит, не может синхронизировать потоки из разных процессов. Существует так же функции инициализации (создания) и удаления, вхождения и выхода из критической секции: создание – InitializeCriticalSection(…), удаление – DeleteCriticalSection(…), вход – EnterCriticalSection(…), выход – LeaveCriticalSection(…). Ограничения: поскольку это не объект ядра, то он не виден другим процессам, то есть можно защищать только потоки своего процесса. Критический раздел анализирует значение специальной перемен­ной процесса, которая используется как флаг, предотвращающий исполнение некоторого участка кода несколькими потоками одновременно. Среди синхронизирующих объектов критические разделы наиболее просты. 2) mutex mutable exclude . Это объект ядра, у него есть имя, а значит с их помощью можно синхронизировать доступ к общим данным со стороны нескольких процессов, точнее, со стороны потоков разных процессов. Ни один другой поток не может завладеть мьютексом, который уже принадлежит одному из по­токов. Если мьютекс защищает какие-то совместно используемые данные, он сможет выполнить свою функцию только в случае, если перед обращением к этим данным каждый из потоков будет проверять состояние этого мьютекса. Windows расценивает мьютекс как объект общего доступа, который можно пере­вести в сигнальное состояние или сбросить. Сигнальное состояние мьютекса говорит о том, что он занят. Потоки должны самостоятельно ана­лизировать текущее состояние мьютексов. Если требуется, чтобы к мьютексу могли обратиться потоки других процессов, ему надо присвоить имя. Функции: CreateMutex(имя) – создание, hnd=OpenMutex(имя) – открытие, WaitForSingleObject(hnd) – ожидание и занятие, ReleaseMutex(hnd) – освобождение, CloseHandle(hnd) – закрытие. Его можно использовать в защите от повторного запуска программ. 3) семафор – semaphore . Объект ядра “семафор” используются для учёта ресурсов и служат для ограничения одновременного доступа к ресурсу нескольких потоков. Используя семафор, можно организовать работу программы таким образом, что к ресурсу одновременно смо­гут получить доступ несколько потоков, однако количество этих потоков будет ограничено. Создавая семафор, указывается максимальное количество пото­ков, которые одновременно смогут работать с ресурсом. Каждый раз, когда программа обращается к семафору, значение счетчика ресурсов семафора уменьша­ется на единицу. Когда значение счетчика ресурсов становится равным нулю, семафор недоступен. создание CreateSemaphore, открытие OpenSemaphore, занять WaitForSingleObject, освобождение ReleaseSemaphore 4 ) событие – event . События обычно просто оповещают об окончании какой-либо операции, они также являются объектами ядра. Можно не просто явным образом освободить, но так же есть операция установки события. События могут быть мануальными (manual) и единичными (single). Единичное событие (single event) – это скорее общий флаг. Событие находится в сигнальном состоянии, если его установил какой-нибудь поток. Если для работы программы требуется, чтобы в случае возникновения события на него реа­гировал только один из потоков, в то время как все остальные потоки продолжали ждать, то используют единичное событие. Мануальное событие (manual event) - это не про­сто общий флаг для нескольких потоков. Оно выполняет несколько более сложные функции. Любой поток может установить это событие или сбросить (очистить) его. Если событие установлено, оно останется в этом состоянии сколь угодно долгое время, вне зависимости от того, сколько потоков ожидают установки этого события. Когда все потоки, ожидающие этого события, получат сообщение о том, что событие произошло, оно автоматически сбросится. Функции: SetEvent, ClearEvent, WaitForEvent. Типы событий: 1) событие с автоматическим сбросом: WaitForSingleEvent. 2) событие с ручным сбросом (manual), тогда событие необходимо сбрасывать: ReleaseEvent. Некоторые теоретики выделяют ещё один объект синхронизации: WaitAbleTimer – объект ядра ОС, который самостоятельно переходит в свободное состояние через заданный интервал времени (будильник).

План занятия:

· Семафоры

· Мьютекс

· Правила упрощенного параллелизма

· Рекурсивный мьютекс

· Условные переменные

Механизмами синхронизации являются средства операционной системы, которые помогают решать основную задачу синхронизации - обеспечивать координацию потоков, которые работают с совместно используемыми данными. Такие средства являются минимальными блоками для построения многопоточных программ, их называют синхронизационными механизмами.

Синхронизационные механизмы подразделяют на следующие основные категории:

  • универсальные для низкого уровня - можно использовать различными способами (семафоры);
  • простые для низкого уровня - каждый из которых приспособлен к решению только одной задачи (мьютексы и условные переменные);
  • универсальные для высокого уровня, выраженные через простые - к этой группе относится концепция монитора, которая может быть выражена через мьютексы и условные переменные;
  • простые для высокого уровня - приспособленные к решению конкретной синхронизационной задачи (блокировка чтения-записи и барьеры).

Семафоры

Концепцию семафоров предложил в 1965 году Э. Дейкстра - известный голландский специалист в области компьютерных наук. Семафоры являются старейшими синхронизационными примитивами из числа применяемых на практике.

Семафор - это совместно используемый неотъемлемый целочисленный счетчик, для которого задано начальное значение и определены следующие атомарные операции.

  • Уменьшение семафора (down): если значение семафора больше нуля, его уменьшают на единицу, если же значение равно нулю, этот поток переходит в состояние ожидания до тех пор, пока оно не станет больше нуля (говорят, что поток «ожидает семафор» или «заблокирован на семафоре»). Эту операцию называют также ожиданиям - wait;
  • Увеличение семафора (up): значение семафора увеличивается на единицу; когда при этом есть потоки, которые ожидают на семафоре, один из них выходит из ожидания и выполняет свою операцию уменьшения. Если на семафоре ожидают несколько потоков, то вследствие выполнения операции увеличения, его значение остается нулевым, но один из потоков продолжает выполнение (в большинстве реализаций выбор этого потока будет случайным). Эту операцию также называют сигнализацией - post.

Фактически значение семафора определяет количество потоков, которое может пройти через этот семафор без блокировки. Когда для семафора задано нулевое начальное значение, то он будет блокировать все потоки до тех пор, пока какой-то поток его не "откроет", выполнив операцию up. Операции up и down могут быть выполнены любыми потоками, имеющих доступ к семафора.


Мьютекс называют синхронизацией примитив, что не допускает выполнения некоторого фрагмента кода более чем одним потоком. Фактически мьютекс является реализацией блокировки на уровне ОС.

Мьютекс, как и следует из его названия, реализует взаимное исключение. Его основная задача - блокировать все потоки, которые пытаются получить доступ к коду, когда этот код уже выполняет некоторый поток.

Мьютекс может находиться в двух состояниях: свободном и занятом. Начальным состоянием является «свободный». Над мьютекс возможны две атомарные операции.

  • Занять мьютекс: если мьютекс был свободен, он становится занятым, и поток продолжает свое выполнение (входя в критическую секцию); если мьютекс был занят, поток переходит в состояние ожидания (говорят, что поток «ожидает мьютекс», или «заблокирован на мьютекс»), выполнение продолжает другой поток. Поток, который занял мьютекс, называют владельцем мьютекс;
  • Освободить мьютекс: мьютекс становится свободным; если на нем ожидают несколько потоков, из них выбирают один, он начинает выполняться, занимает мьютекс и входит в критическую секцию. В большинстве реализаций выбор потока будет случайным. Освободить мьютекс может только его владелец.

Правила упрощенного параллелизма

Правила упрощенного параллелизма предназначены для упрощения программирования на базе мьютексов. Они основываются на том очевидном факте, что мьютекс защищает не код критической секции, а совместно используемые данные внутри этой секции. Особенности работы упрощенного параллелизма:

  • Каждая переменная, которую совместно использует более одного поток, должна быть защищена отдельным мьютексом;
  • Перед каждой операцией изменения такой переменной, соответствующий мьютекс должен быть занят, а после изменения освобожден;
  • Если надо работать одновременно с несколькими совместно используемыми переменными, необходимо занять все их мьютексы до начала работы и освободить их только после полного окончания работы.

Рекурсивный мьютекс

Рекурсивный мьютекс - особый вид мьютекса. Он позволяет повторное занятие тем же потоком, а также отслеживает, какой поток пытается его занять.

Когда это не тот поток, который уже занимает, мьютекс ведет себя как обычный, и поток переходит в состояние ожидания. Когда же это тот самый поток, внутренний счетчик блокировок этого мьютекс увеличивают на единицу, и поток продолжает свое выполнение. В случае увольнения мьютекс внутренний счетчик уменьшается на единицу, для других потоков рекурсивный мьютекс будет разблокирована только тогда, когда счетчик дойдет до нуля (то есть когда все его блокировки одним потоком будут сняты).

Рекурсивные мьютексы менее эффективны в реализации, не могут быть использованы вместе с условными переменными (этот вопрос рассмотрим в следующем разделе), поэтому обращаться к ним нужно только тогда, когда без этого нельзя обойтись. Например, библиотека функций может использовать такие мьютексы для того, чтобы избежать взаимных блокировок при повторном вызове таких функций одним потоком.

Условные переменные

Условной переменной называют синхронизационные примитивы, позволяющие организовать ожидания выполнения условия внутри критической секции, заданной мьютексом. Условная переменная всегда связана с конкретным мьютексом и данными, защищенными этим мьютексом. Для условной переменной определены следующие операции:

  1. Ожидания (wait). Дополнительным входным параметром эта операция принимает мьютекс, который должен находиться в закрытом состоянии. Вызов ожидания происходит в ситуации, когда не выполняется некоторое условие и нужны потоки для продолжения работы. Вследствие выполнения ожидания поток прекращается (говорят, что он «ожидает условной переменной»), а мьютекс открывается (эти два действия происходят атомарно). Так другие потоки получают возможность войти в критическую секцию и изменить там данные, которые она защищает, возможно, выполнив условие, необходимое потоку. На этом операция ожидания не заканчивается - ее завершит другой поток, вызвав операцию сигнализации после того, как условие будет выполнено.
  2. Сигнализация (signal). Эту операцию поток должен выполнить после того, как войдет в критическую секцию и завершит работу с данными (выполнив условие, которое ожидал поток, вызвавший операцию wait). Эта операция проверяет, нет ли потоков, ожидающих условной переменной, и если такие потоки есть, переводит один из них в состояние готовности. В результате восстановления поток завершает выполнение операции ожидания и блокирует мьютекс (обновления и блокировки тоже происходят атомарно). Если нет ни одного потока, который ожидает условной переменной, операция сигнализирования не делает ничего, и информацию о ее выполнении в системе не сохраняют.
  3. Широковещательная сигнализация (broadcast) отличается от обычной тем, что перевод в состояние готовности и восстановление выполняют для всех потоков, ожидающих этой условной переменной, а не только для одного из них.

Таким образом, выполнение операции ожидания состоит из следующих этапов: открытие мьютекс, ожидания (пока другой поток не выполнит операцию signal или broadcast), закрытие мьютекс.

mob_info